Abstract:
The present invention presents methods for reducing the amount of noise inherent in the reading of a non-volatile storage device by applying an episodic agitation (e.g. a time varying voltage) to some terminal(s) of the cell as part of the reading process. Various aspects of the present invention also extend to devices beyond non-volatile memories. According to one aspect of the present invention, in addition to the normal voltage levels applied to the cell as part of the reading process, a time varying voltage is applied to the cell. A set of exemplary embodiments apply a single or multiple set of alternating voltages to one or more terminals of a floating gate memory cell just prior to or during the signal integration time of a read process. In other embodiments, other reproducible external or internal agitations which are repeatable, and whose average effect (from one integration time to the next integration time) remains sufficiently constant so as to have a net noise reduction effect is applicable.
Abstract:
The present invention presents methods for reducing the amount of noise inherent in the reading of a non-volatile storage device by applying an episodic agitation (e.g. a time varying voltage) to some terminal(s) of the cell as part of the reading process. Various aspects of the present invention also extend to devices beyond non-volatile memories. According to one aspect of the present invention, in addition to the normal voltage levels applied to the cell as part of the reading process, a time varying voltage is applied to the cell. A set of exemplary embodiments apply a single or multiple set of alternating voltages to one or more terminals of a floating gate memory cell just prior to or during the signal integration time of a read process. In other embodiments, other reproducible external or internal agitations which are repeatable, and whose average effect (from one integration time to the next integration time) remains sufficiently constant so as to have a net noise reduction effect is applicable.
Abstract:
The present invention presents methods for reducing the amount of noise inherent in the reading of a non-volatile storage device by applying an episodic agitation (e.g. a time varying voltage) to some terminal(s) of the cell as part of the reading process. Various aspects of the present invention also extend to devices beyond non-volatile memories. According to one aspect of the present invention, in addition to the normal voltage levels applied to the cell as part of the reading process, a time varying voltage is applied to the cell. A set of exemplary embodiments apply a single or multiple set of alternating voltages to one or more terminals of a floating gate memory cell just prior to or during the signal integration time of a read process. In other embodiments, other reproducible external or internal agitations which are repeatable, and whose average effect (from one integration time to the next integration time) remains sufficiently constant so as to have a net noise reduction effect is applicable.
Abstract:
A system and method for quickly and efficiently programming hard-to-program storage elements in non-volatile integrated memory devices is presented. A number of storage elements are simultaneously subjected to a programming process with the current flowing through the storage elements limited to a first level. As a portion of these storage elements reach a prescribed state, they are removed from the set of cells being programmed and the current limit on the elements that continue to be programmed is raised. The current level in these hard-to-program cells can be raised to a second, higher limit or unregulated. According to another aspect, during a program operation the current limit allowed for a cell depends upon the target state to which it is to be programmed.
Abstract:
A non-volatile memory device is programmed by first performing a coarse programming process and subsequently performing a fine programming process. The coarse/fine programming methodology is enhanced by using an efficient verification scheme that allows some non-volatile memory cells to be verified for the coarse programming process while other non-volatile memory cells are verified for the fine programming process. The fine programming process can be accomplished using current sinking, charge packet metering or other suitable means.
Abstract:
A system and method for quickly and efficiently programming hard-to-program storage elements in non-volatile integrated memory devices is presented. A number of storage elements are simultaneously subjected to a programming process with the current flowing through the storage elements limited to a first level. As a portion of these storage elements reach a prescribed state, they are removed from the set of cells being programmed and the current limit on the elements that continue to be programmed is raised. The current level in these hard-to-program cells can be raised to a second, higher limit or unregulated. According to another aspect, during a program operation the current limit allowed for a cell depends upon the target state to which it is to be programmed.
Abstract:
A system is disclosed for programming non-volatile memory with greater precision. In one embodiment, the system includes applying a first phase of a boosting signal to one or more unselected word lines for a set of NAND strings, applying a programming level to selected bit lines of the NAND strings while applying the first phase of the boosting signal, and applying an inhibit level to unselected bit lines of the NAND strings while applying the first phase of the boosting signal. Subsequently, a second phase of the boosting signal is applied to the one or more unselected word lines and the signal(s) on the selected bit lines are changed by applying the inhibit level to the selected bit lines so that NAND strings associated with the selected bit lines will be boosted by the second phase of the boosting signal. A program voltage signal is applied to a selected word line in order to program storage elements connected to the selected word line.
Abstract:
A non-volatile memory device is programmed by first performing a coarse programming process and subsequently performing a fine programming process. The coarse/fine programming methodology is enhanced by using an efficient verification scheme that allows some non-volatile memory cells to be verified for the coarse programming process while other non-volatile memory cells are verified for the fine programming process. The fine programming process can be accomplished using current sinking, charge packet metering or other suitable means.
Abstract:
A non-volatile memory device is programmed by first performing a coarse programming process and subsequently performing a fine programming process. The coarse/fine programming methodology is enhanced by using an efficient verification scheme that allows some non-volatile memory cells to be verified for the coarse programming process while other non-volatile memory cells are verified for the fine programming process. The fine programming process can be accomplished using current sinking, charge packet metering or other suitable means.
Abstract:
A non-volatile memory device is programmed by first performing a coarse programming process and subsequently performing a fine programming process. The coarse/fine programming methodology is enhanced by using an efficient verification scheme that allows some non-volatile memory cells to be verified for the coarse programming process while other non-volatile memory cells are verified for the fine programming process. The fine programming process can be accomplished using current sinking, charge packet metering or other suitable means.