摘要:
A non-contact air bearing having electrostatic discharge properties may comprise: a porous media element having a bearing surface; a supply line configured supply an externally pressurize gas or fluid to the porous media; and an electrostatic dissipative porous bearing layer on the bearing surface of the porous media element; wherein the externally pressurized fluid flows through the porous media element and creates a thin film between the electrostatic dissipative layer and a substrate supported by the air bearing.
摘要:
In order to effect a seal a porous material which comprises one side of two opposing surfaces is used to restrict and evenly distribute externally pressurized gas, liquid, steam, etc. between the two surfaces, exerting a force which is opposite the forces from pressure differences or springs trying to close the two faces together and so may create a non-contact seal that is more stable and reliable than hydrodynamic seals currently in use. A non-contact bearing is also disclosed having opposing surfaces with relative motion and one surface issuing higher than ambient pressure through a porous restriction, wherein the porous restriction is part of a monolithic porous body, or a porous layer, attached to lands containing a labyrinth, the porous restriction and lands configured to not distort more than 10% of a gap created from differential pressure between each side of the porous restriction.
摘要:
In order to effect a seal a porous material which comprises one side of two opposing surfaces is used to restrict and evenly distribute externally pressurized gas, liquid, steam, etc. between the two surfaces, exerting a force which is opposite the forces from pressure differences or springs trying to close the two faces together and so may create a non-contact seal that is more stable and reliable than hydrodynamic seals currently in use. A non-contact bearing is also disclosed having opposing surfaces with relative motion and one surface issuing higher than ambient pressure through a porous restriction, wherein the porous restriction is part of a monolithic porous body, or a porous layer, attached to lands containing a labyrinth, the porous restriction and lands configured to not distort more than 10% of a gap created from differential pressure between each side of the porous restriction.
摘要:
An externally pressurized porous gas bearing for operating within a refrigerant environment is disclosed. The gas bearing utilizes shear heating from rotation of a rotor, thereby increasing the pressure and load capacity of the externally pressurized porous gas bearing. The gas bearing is capable of operating when the refrigerant is in a liquid phase and when the refrigerant is in a gaseous phase.
摘要:
In order to drastically improve the functionality of flow control, externally-pressurized porous media gas bearings is introduced into valves. The porous media gas bearings mitigate two of the biggest issues with the current technology, which are: (1) leakage of fugitive emissions, and (2) high breakaway torque values for actuating valves. By employing externally-pressurized porous media bearings, fugitive emissions are completely eliminated, and valves can be rotated effortlessly due to the non-contact nature of porous media gas bearings.
摘要:
An externally pressurized porous gas bearing for operating within a refrigerant environment is disclosed. The gas bearing utilizes shear heating from rotation of a rotor, thereby increasing the pressure and load capacity of the externally pressurized porous gas bearing. The gas bearing is capable of operating when the refrigerant is in a liquid phase and when the refrigerant is in a gaseous phase.
摘要:
In order to effect a seal; a porous material which comprises one side of two opposing surfaces is used to restrict and evenly distribute externally pressurized gas, liquid, steam, etc. between the two surfaces, exerting a force which is opposite the forces from pressure differences or springs trying to close the two faces together and so may create a non contact seal that is more stable and reliable than hydrodynamic seals currently in use.
摘要:
In order to effect a seal; a porous material which comprises one side of two opposing surfaces is used to restrict and evenly distribute externally pressurized gas, liquid, steam, etc. between the two surfaces, exerting a force which is opposite the forces from pressure differences or springs trying to close the two faces together and so may create a non contact seal that is more stable and reliable than hydrodynamic seals currently in use.