Abstract:
Light applied from an illumination unit illuminates a space formed of an accommodation unit, and facilitates a user's operation of coupling a charging connector to an electric power-receiving unit. When a lid unit is in a closed state, a part of the light applied from the illumination unit toward the accommodation unit transmits through a light transmission member provided at the lid unit and leaks toward a space outside a vehicle body. The leaked light enables a user to visually perceive the position of the charging port at a glance even if the lid unit is in the closed state.
Abstract:
Light applied from an illumination unit (212) illuminates a space formed of an accommodation unit (208), and facilitates a user's operation of coupling a charging connector to an electric power-receiving unit (210). When a lid unit (204) is in a closed state, a part of the light applied from the illumination unit (212) toward the accommodation unit (208) transmits through a light transmission member (202) provided at the lid unit (204) and leaks toward a space outside a vehicle body (300). The leaked light enables a user to visually perceive the position of the charging port (200) at a glance even if the lid unit (204) is in the closed state.
Abstract:
An indicator portion (55) includes a first indicator portion (110) and a second indicator portion (112). The first indicator portion (110) indicates an accelerator pedal opening degree that changes in accordance with an operated amount of the accelerator pedal by the driver. The second indicator portion (112) includes a division line (114) and regions (116, 118) divided by the division line (114). The division line (114) shows an accelerator pedal opening degree where traveling modes (EV mode and HV mode) are switched. The regions (116, 118) show the ranges of accelerator pedal opening degrees where traveling is performed in EV mode and HV mode, respectively.
Abstract:
A communication unit periodically transmits a request signal toward a prescribed range. When a transmitter exists in the range where the request signal can be received, it sends identification information in a responsive manner. A comparison ECU compares the identification information provided from the communication unit with a predetermined value, and if both of them match with each other, notifies a matching notification to a power source management ECU. On receipt of the matching notification from the comparison ECU, the power source management ECU notifies a lighting-up request for providing an instruction for lighting-up of a light-emitting unit to a body ECU. Upon receipt of the lighting-up request, the body ECU activates a lighting-up command LON. As a result, the light-emitting unit is lit up and notifies a user of the position of a charging port.
Abstract:
An indicator portion (55) includes a first indicator portion (110) and a second indicator portion (112). The first indicator portion (110) indicates an accelerator pedal opening degree that changes in accordance with an operated amount of the accelerator pedal by the driver. The second indicator portion (112) includes a division line (114) and regions (116, 118) divided by the division line (114). The division line (114) shows an accelerator pedal opening degree where traveling modes (EV mode and HV mode) are switched. The regions (116, 118) show the ranges of accelerator pedal opening degrees where traveling is performed in EV mode and HV mode, respectively.
Abstract:
A communication unit (32) periodically transmits a request signal toward a prescribed range. When a transmitter (30) exists in the range where the request signal can be received, it sends identification information in a responsive manner. A comparison ECU (48) compares the identification information provided from the communication unit (32) with a predetermined value, and if both of them match with each other, notifies a matching notification to a power source management ECU (44). On receipt of the matching notification from the comparison ECU (48), the power source management ECU (44) notifies a lighting-up request for providing an instruction for lighting-up of a light-emitting unit (202) to a body ECU (46). Upon receipt of the lighting-up request, the body ECU (46) activates a lighting-up command LON. As a result, the light-emitting unit (202) is lit up and notifies a user of the position of a charging port.
Abstract:
A communication unit (32) periodically transmits a request signal toward a prescribed range. When a transmitter (30) exists in the range where the request signal can be received, it sends identification information in a responsive manner. A comparison ECU (48) compares the identification information provided from the communication unit (32) with a predetermined value, and if both of them match with each other, notifies a matching notification to a power source management ECU (44). On receipt of the matching notification from the comparison ECU (48), the power source management ECU (44) notifies a lighting-up request for providing an instruction for lighting-up of a light-emitting unit (202) to a body ECU (46). Upon receipt of the lighting-up request, the body ECU (46) activates a lighting-up command LON. As a result, the light-emitting unit (202) is lit up and notifies a user of the position of a charging port.
Abstract:
The fuel cell disclosed in the present specification is provided with an electrolyte membrane comprising a three-dimensional structure composed of bridged chains of a first polymer stable to water, and a second polymer having a function as an electrolyte. In such an electrolyte membrane, the bridged chains of the first polymer hold the second polymer, and hence the membrane does not swell with water. Furthermore, the electrolyte membrane can be properly designed depending on conditions required of the fuel cell, by choosing the first and second polymers.
Abstract:
An electronic apparatus includes an outer housing; a battery storage compartment provided in the outer housing and having a height and a width and depth larger than the height; a cover for opening and closing an opening of the battery storage compartment; and a battery ejecting spring disposed in a deep portion of the battery storage compartment and for urging a battery being stored in the battery storage compartment along a direction of ejection of the battery from the opening. The battery ejecting spring includes a pivot shaft, an anchor shaft, and an urging shaft. The pivot shaft extends along the width direction. The anchor shaft stops the rotation of the one end portion of the pivot shaft. The urging shaft includes a tip end engaging with an end face of the battery, thereby to perform a pivotal movement about the pivot shaft working as a fulcrum.
Abstract:
An electronic apparatus includes an outer housing; a battery storage compartment provided in the outer housing and having a height and a width and depth larger than the height; a cover for opening and closing an opening of the battery storage compartment; and a battery ejecting spring disposed in a deep portion of the battery storage compartment and for urging a battery being stored in the battery storage compartment along a direction of ejection of the battery from the opening. The battery ejecting spring includes a pivot shaft, an anchor shaft, and an urging shaft. The pivot shaft extends along the width direction. The anchor shaft stops the rotation of the one end portion of the pivot shaft. The urging shaft includes a tip end engaging with an end face of the battery, thereby to perform a pivotal movement about the pivot shaft working as a fulcrum.