Abstract:
A tool useful in the manufacture of a semiconductor is disclosed. A mold is providing having an interior defining a planar capillary space. A coating substantially covers at least the planar capillary space of the graphite member. The coating is substantially non-reactive to silicon at temperatures greater than approximately 1420 degrees Centigrade.
Abstract:
A thermoelectric semiconducting assembly. Two parallel plates, a first plate and a second plate, are spaced apart. A plurality of pellets are fitted into said first plate and into said second plate, each said pellet comprising a body, a first cap, and a second cap, said body including a silicon material, said first cap and said second cap including an electrically resistive ceramic material, each pellet in said second plate being connected to a pellet in said first plate. Each pellet includes a doped body, wherein half of said pellets are doped with a p-type dopant to form a p-type pellet and half of said pellets are doped with an n-type dopant to form an n-type pellet. Each plate includes p-type pellets and n-type pellets in an alternating pattern, and each p-type pellet in said first plate connects with an n-type pellet in said second plate, and wherein each n-type pellet in said first plate connects with a p-type pellet in said second plate.
Abstract:
A method of manufacturing a semiconductor includes providing a mold defining a planar capillary space; placing a measure of precursor in fluid communication with the capillary space; creating a vacuum around the mold and within the planar capillary space; melting the precursor; allowing the melted precursor to flow into the capillary space; and cooling the melted precursor within the mold such that the precursor forms a semiconductor, the operations of melting the precursor, allowing the precursor to flow into the capillary space, and cooling the melted precursor occurring in the vacuum.
Abstract:
A thermoelectric material to exploit a unidirectional thermal gradient for the production of electrical power, comprising a body fabricated from milled silicon alloyed with a dopant and sintered at a temperature below the melting point of silicon.
Abstract:
Thermally conductive, electrically insulating epoxy molding compounds that use milled silicon as a filler material, and methods and processes for making the same. Some example embodiments of the present invention comprise the use of a passivation agent, for example ethyl silicate, to deposit a thin layer of glass on the surfaces of the powders as the powders are milled, creating an attractive surface dielectric property on these surfaces.