摘要:
A scintillation crystal can include a rare earth silicate, an activator, and a Group 2 co-dopant. In an embodiment, the Group 2 co-dopant concentration may not exceed 200 ppm atomic in the crystal or 0.25 at % in the melt before the crystal is formed. The ratio of the Group 2 concentration/activator atomic concentration can be in a range of 0.4 to 2.5. In another embodiment, the scintillation crystal may have a decay time no greater than 40 ns, and in another embodiment, have the same or higher light output than another crystal having the same composition except without the Group 2 co-dopant. In a further embodiment, a boule can be grown to a diameter of at least 75 mm and have no spiral or very low spiral and no cracks. The scintillation crystal can be used in a radiation detection apparatus and be coupled to a photosensor.
摘要:
The present disclosure provides a method for crystal growth. The method may include at one of the following operations: weighing reactants for growing an oxide crystal after a first preprocessing operation is performed on the reactants; placing the reactants, on which a second preprocessing operation has been performed, into a crystal growth device after an assembly preprocessing operation is performed on at least one component of the crystal growth device, wherein the at least one component of the crystal growth device includes a crucible, the assembly preprocessing operation includes at least one of a coating operation, an acid soaking and cleaning operation, or an impurity cleaning operation; introducing a protective gas into the crystal growth device after sealing the crystal growth device; activating the crystal growth apparatus to execute the crystal growth; and adding reactant supplements into the crystal growth device in real-time during the crystal growth.
摘要:
A scintillation crystal can include a rare earth silicate, an activator, and a Group 2 co-dopant. In an embodiment, the Group 2 co-dopant concentration may not exceed 200 ppm atomic in the crystal or 0.25 at in the melt before the crystal is formed. The ratio of the Group 2 concentration/activator atomic concentration can be in a range of 0.4 to 2.5. In another embodiment, the scintillation crystal may have a decay time no greater than 40 ns, and in another embodiment, have the same or higher light output than another crystal having the same composition except without the Group 2 co-dopant. In a further embodiment, a boule can be grown to a diameter of at least 75 mm and have no spiral or very low spiral and no cracks. The scintillation crystal can be used in a radiation detection apparatus and be coupled to a photosensor.
摘要:
Embodiments of the invention generally provide compositions of crystalline zeolite materials with tailored crystal habits and the methods for forming such crystalline zeolite materials. The methods for forming the crystalline zeolite materials include binding one or more zeolite growth modifiers (ZGMs) to the surface of a zeolite crystal, which results in the modification of crystal growth rates along different crystallographic directions, leading to the formation of zeolites having a tailored crystal habit. The improved properties enabled by the tailored crystal habit include a minimized crystal thickness, a shortened internal diffusion pathlength, and a greater step density as compared to a zeolite having the native crystal habit prepared by traditional processes. The tailored crystal habit provides the crystalline zeolite materials with an aspect ratio of about 4 or greater and crystal surfaces having a step density of about 25 steps/μm2 or greater.
摘要:
A crystal material represented by a general formula (1): (Gd1-x-y-zLaxMEyREz)2MM2O7 (1), where ME is at least one selected from Y, Yb, Sc, and Lu; RE is Ce or Pr; MM is at least one selected from Si and Ge; and ranges of x, y, and z are represented by the following (i): (i) 0.0≦x+y+z
摘要:
Single crystals are described that contain several regimes within the crystal that perform different functions related to the enhanced performance of a laser gain medium. At least one regime of the single crystals can be utilized to suppress amplified spontaneous emission and parasitic oscillation in a laser gain medium. A single crystal can include core and cladding regions, the cladding region providing amplified spontaneous emission suppression. The core region of the crystal can include as dopant one or more ions that take part in the lasing when suitably pumped. The amplified spontaneous emission suppression region can include as dopant one or more ions that can prevent additional spontaneous emission that can to depletion of the upper laser states, thus reducing laser performance including one or more ions that absorb spontaneously emitted photons and/or a higher concentration of the active lasing ions of the core.
摘要:
A method for making a rare-earth oxyorthosilicate scintillator single crystal includes growing a single crystal from a melt of compounds including a rare-earth element (such as Lu), silicon and oxygen, a compound including a rare-earth activator (such as Ce), and a compound of a Group-7 element (such as Mn). The method further includes selecting an scintillation performance parameter (such as decay), and based on the scintillation performance parameter to be achieved, doping activator and Group-7 element at predetermined levels, or relative levels between the two, so as to achieve stable growth of the single-crystalline scintillator material from the melt.
摘要:
A bismuth-substituted rare-earth iron garnet crystal film (RIG) which has an insertion loss of less than 0.6 dB and which can be produced in a high yield, as well as an optical isolator, which is grown by liquid phase epitaxy on a non-magnetic garnet substrate represented by a chemical formula of Gd3(ScGa)5O12, wherein the RIG is represented by a chemical formula of Nd3-x-yGdxBiyFe5O12, and x and y satisfy 0.89≦x≦1.43 and 0.85≦y≦1.19. In contrast to conventional RIGs, the RIG represented by the chemical formula of Nd3-x-yGdxBiyFe5O12 of the present invention has an insertion loss of less than 0.6 dB and makes it possible to reduce the amount of heat generated because of absorption of light at wavelengths of about 1 μm. Hence, the RIG has such a remarkable effect that the RIG can be used as a Faraday rotator used for an optical isolator in a high-power laser device for processing.
摘要翻译:具有小于0.6dB的插入损耗并且可以高产率生产的铋取代的稀土铁石榴石晶体膜(RIG)以及通过液相外延生长的光隔离器 由Gd 3(ScGa)5 O 12化学式表示的非磁性石榴石基材,其中RIG由化学式Nd 3-x-yGd x B y Fe 5 O 12表示,x和y满足0.89≦̸ x≦̸ 1.43和0.85≦̸ y≦̸ 1.19。 与传统的RIG相反,本发明的Nd3-x-yGdxBiyFe5O12化学式表示的RIG具有小于0.6dB的插入损耗,并且可以减少由于波长吸收光而产生的热量 约1μm。 因此,RIG具有如此显着的效果,RIG可用作用于高功率激光装置中用于光隔离器的法拉第旋转器用于处理。
摘要:
In a Li2O—Al2O3—SiO2 based crystallized glass using SnO2 as a substitute fining agent for As2O3 or Sb2O3, a crystallized glass having less yellow coloration is provided at low costs. The glass is a Li2O—Al2O3—SiO2 based crystallized glass comprising from 0.01 to 0.9% of SnO2 in terms of % by mass and having a content of each of As2O3 and Sb2O3 of 1,000 ppm or less as a glass composition, which has a V2O5 content of from 0.08 to 15 ppm in the glass composition.
摘要翻译:在使用SnO 2作为As 2 O 3或Sb 2 O 3的替代澄清剂的Li 2 O-Al 2 O 3 -SiO 2系结晶玻璃中,以低成本提供了黄色变浅的结晶化玻璃。 所述玻璃为Li2O-Al2O3-SiO2系结晶玻璃,其以质量%计含有0.01〜0.9质量%的SnO 2,作为玻璃组合物的As 2 O 3和Sb 2 O 3的含量为1000ppm以下,其具有V 2 O 5 玻璃组合物中的含量为0.08〜15ppm。
摘要:
A method of growing a rare-earth oxyorthosilicate crystal, and crystals grown using the method are disclosed. The method includes preparing a melt by melting a first substance including at least one first rare-earth element and providing an atmosphere that includes an inert gas and a gas including oxygen.