摘要:
An object of the present invention is to provide a semiconductor laser device which is capable of selectively emitting two kinds of laser light of light emitting characteristics differing in wavelength, light emission point, beam shape, light emission power, longitudinal mode and so on, by switching the direction of the voltage applied to the device. There is provided the semiconductor laser device including first and second laser units, each unit having a ridge type structure and each unit comprising a multilayer structure body made of at least an n-type semiconductor layer, an active layer and a p-type semiconductor layer deposited in this order, and a p-side electrode and an n-side electrode, wherein the p-side electrode and the n-side electrode of the first laser unit and the n-side electrode and the p-side electrode of the second laser unit are electrically connected, respectively.
摘要:
A nitride semiconductor light emitting device having preferable light emitting characteristics even if dense threading dislocations extend through single crystal layers. The nitride semiconductor light emitting device includes an active layer obtained by depositing group-3 nitride semiconductors, and a barrier layer disposed adjacent to the active layer and having a greater bandgap than that of the active layer, the active layer having barrier portions which surround the threading dislocations and are defined by interfaces enclosing the threading dislocation and which are made of the same material as that of the barrier layer.
摘要:
A nitride semiconductor light emitting device having preferable light emitting characteristics even if dense threading dislocations extend through single crystal layers. The nitride semiconductor light emitting device includes an active layer obtained by depositing group-3 nitride semiconductors, and a barrier layer disposed adjacent to the active layer and having a greater bandgap than that of the active layer, the active layer having barrier portions which surround the threading dislocations and are defined by interfaces enclosing the threading dislocation and which are made of the same material as that of the barrier layer.
摘要:
A method for fabricating a nitride-semiconductor laser constituted by superimposing a plurality of crystal layers respectively made of a group III nitride semiconductor (AlxGa1−x)1−YInyN (0≦x≦1, 0≦y≦1) on a cleavable or parting substrate in order comprises the crystal layer forming step of forming a plurality of crystal layers on a cleavable or parting substrate, the step of applying a light beam from the substrate side toward the interface between the substrate and the crystal layers and thereby forming the decomposed-matter area of the nitride semiconductor, and the step of cleaving or parting the substrate along a straight line intersecting with the decomposed-matter area and thereby forming a cleavage plane.
摘要翻译:一种制造氮化物半导体激光器的方法,其通过将由III族氮化物半导体(Al x Ga 1-x)1-Y In y N(0≤x≤1,0<= y <1))分别制成的多个晶体层叠加而构成, 在可切割或分离基板上的顺序包括在可切割或分离的基板上形成多个晶体层的晶体层形成步骤,将从基板侧的光束施加到基板和晶体层之间的界面的步骤,以及 从而形成氮化物半导体的分解物区域,以及沿着与分解物区域相交的直线切断或分离基板的步骤,从而形成解理面。
摘要:
An underlying layer ALY of GaN is formed on a sapphire substrate SSB; a transfer layer TLY of GaN with a bump and dip shaped surface is formed on the underlying layer ALY; a light absorption layer BLY is formed on the bump and dip shaped surface of the transfer layer TLY; and a grown layer 4 of a planarization layer CLY and a structured light-emitting layer DLY having at least an active layer are formed on the light absorption layer BLY. A support substrate 2 is provided on the grown layer 4. The backside of the sapphire substrate SSB is irradiated with light of the second harmonic of YAG laser (wavelength 532 nm) to decompose the light absorption layer BLY and delaminate the sapphire substrate SSB, thereby allowing the planarization layer CLY of a bump and dip shaped surface to be exposed as a light extraction face.
摘要:
A method for fabricating a nitride semiconductor laser device having crystal layers each made of a group III nitride semiconductor (AlxGa1−x)1−YInyN (0≦x≦1, 0≦y≦1) layered in order on a ground layer (Alx′Ga1−x′)1−y′Iny′N (0≦x′≦1, 0≦y′≦1). The method including a step of forming a plurality of crystal layers each made of group III nitride semiconductor on a ground layer formed on a substrate such as sapphire; a step of applying a light beam from the substrate side toward the interface between the substrate and the ground layer thereby forming the decomposed-matter area of a nitride semiconductor; a step of separating the ground layer carrying the crystal layers from the substrate along the decomposed-matter area; and a step of cleaving the ground layer thereby forming a cleavage plane of the crystal layers.
摘要翻译:一种用于制造氮化物半导体激光器件的方法,该器件具有各自由III族氮化物半导体(Al x Ga 1-x)1-Y In y N(0 <= x <= 1,0 <= y <= 1) 接地层(Al x Ga 1-x')1-y'In y'N(0 <= x'<= 1,0 <= y'<= 1)。 该方法包括在形成在诸如蓝宝石的衬底上的接地层上形成由III族氮化物半导体制成的多个晶体层的步骤; 从基板侧朝向基板和接地层之间的界面施加光束,从而形成氮化物半导体的分解物区域的步骤; 沿着分解物区域从基板分离携带晶体层的接地层的步骤; 以及切割接地层从而形成晶体层的解理面的步骤。
摘要:
A wavelength conversion element comprises a laser oscillation portion provided with an active layer waveguide formed of a material of III-V group in a periodic table and an output waveguide path portion provided with an output waveguide. The output waveguide path portion is further provided with a buffer layer between the output waveguide and the active layer waveguide having a thickness suitable for propagation of an evanecsent wave from the active layer waveguide to the output waveguide. In result, a wavelength conversion efficiency of a second harmonic can be remarkably improved, and a process of manufacturing the wavelength conversion element becomes more easy.
摘要:
A mechanical quantity measuring device (100) includes a semiconductor substrate (1) attached to a measured object so as to indirectly measure the mechanical quantity acting on the measured object; a measuring portion (7) capable of measuring a mechanical quantity acting on the semiconductor substrate (1) at a central part (1c) of the semiconductor substrate (1); and plural impurity diffused resistors (3a, 3b, 4a, 4b) forming a group (5) gathering closely to each other in at least one place, on an outer peripheral part (1e) outside the central part (1c) of the semiconductor substrate (1). The plural impurity diffused resistors (3a, 3b, 4a, 4b) forming one of the group (5) are connected to each other to form a Wheatstone bridge (2a, 2b). Thus, the mechanical quantity measuring device (100) can securely detect its own exfoliation.
摘要:
A magnetic tape which comprises a nonmagnetic support, a magnetic layer which is formed on one surface of the nonmagnetic support, and a backcoat layer which comprises a binder and nonmagnetic powder containing carbon black as a component and which is formed on the other surface of the nonmagnetic support, having pits for optical servo formed thereon, characterized in that the average of the reflectance on the flat portion of the backcoat layer is 8.5% or higher, and that the maximum rate of fluctuation of the reflectance on the flat portion, depending on a position of the magnetic tape: [Maximum of absolute value of (Reflectance−Average reflectance)]×100/(Average reflectance) is 10% or lower. This magnetic tape is high in the initial S/N of the servo signal, and also high in the S/N of the servo signal found after the magnetic tape is run twice.
摘要:
A semiconductor device manufacturing method includes the steps of: (a) forming a stopper layer for chemical mechanical polishing on a surface of a semiconductor substrate; (b) forming an element isolation trench in the stopper layer and the semiconductor substrate; (c) depositing a nitride film covering an inner surface of the trench; (d) depositing a first oxide film through high density plasma CVD, the first oxide film burying at least a lower portion of the trench deposited with the nitride film; (e) washing out the first oxide film on a side wall of the trench by dilute hydrofluoric acid; (f) depositing a second oxide film by high density plasma CVD, the second oxide film burying the trench after the washing-out; and (g) removing the oxide films on the stopper layer by chemical mechanical polishing.