Abstract:
An antenna system includes an antenna, a first frequency dividing circuit, a second frequency dividing circuit, and a plurality of matching circuits. The first frequency dividing circuit is coupled to the antenna. The matching circuits are coupled to the first frequency dividing circuit. The second frequency dividing circuit is coupled to the matching circuits. The matching circuits are configured to process different frequency signals, respectively.
Abstract:
An interface module for a communication device includes a first switch, for forming a first connection between a first feeding point of an antenna of the communication device and one of a first matching component and a first grounding component; a second switch, for forming a second connection between a second feeding point of the antenna and one of a second matching component and a second grounding component; and a third switch, for forming a third connection between a transceiver and one of the first matching component and the first grounding component.
Abstract:
An antenna is provided. The antenna includes a first radiator positioned at a first level and connected to a ground plane at a second level. In a top view, the first radiator has a first edge, a second edge, a third edge, a fourth edge and a first arc edge. The second edge and the third edge are connected to opposite ends of the first edge. The fourth edge is connected to an end of the third edge opposite to the first edge. The first arc edge with a first radius has opposite ends respectively connected to the second edge and the fourth edge. The first arc edge has a first arc length corresponding to a first central angle, which is less than 90 degrees.
Abstract:
A radio frequency (RF) system and a communication device are provided. The RF system includes a flexible circuit board, a first antenna module and a RF module. The flexible circuit board has a first surface and a second surface, and the first surface and the second surface are located at different sides of the flexible circuit board. The first antenna module is disposed on the first surface of the flexible circuit board. The first antenna module includes a first carrier, a first antenna element disposed on or in the first carrier, and a first conductive member between the first carrier and the flexible circuit board. The RF module is disposed on the second surface of the flexible circuit board and electrically connected to the first antenna module.
Abstract:
A millimeter wave antenna device includes an antenna array, a first parasitic element and a second parasitic element. The antenna array includes m×n antennas and is disposed in an antenna area. The first parasitic element is disposed beside a first side of the antenna area. The second parasitic element is disposed beside a second side of the antenna area. None of the first parasitic element and the second parasitic element overlaps with the antenna area.
Abstract:
A semiconductor package structure is provided. The semiconductor package structure includes a first redistribution layer (RDL) structure formed on a non-active surface of a semiconductor die. A second RDL structure is formed on and electrically coupled to an active surface of the semiconductor die. A ground layer is formed in the first RDL structure. A first molding compound layer is formed on the first RDL structure. A first antenna includes a first antenna element formed in the second RDL structure and a second antenna element formed on the first molding compound layer. Each of the first antenna element and the second antenna element has a first portion overlapping the semiconductor die as viewed from a top-view perspective.
Abstract:
A semiconductor package structure is provided. The semiconductor package structure includes a first redistribution layer (RDL) structure formed on a non-active surface of a semiconductor die. A second RDL structure is formed on and electrically coupled to an active surface of the semiconductor die. A ground layer is formed in the first RDL structure. A first molding compound layer is formed on the first RDL structure. A first antenna includes a first antenna element formed in the second RDL structure and a second antenna element formed on the first molding compound layer. Each of the first antenna element and the second antenna element has a first portion overlapping the semiconductor die as viewed from a top-view perspective.
Abstract:
An antenna assembly includes a first antenna element coupled to RF circuitry via a first feeder, and a second antenna element coupled to the RF circuitry via a second feeder. The first feeder and the second feeder have different shapes. The first antenna element and the second antenna element radiate in different frequency bands and in a direction parallel to a ground plane. The ground plane is disposed on at least one layer in a substrate that includes a plurality of layers parallel to one another. The first antenna element is disposed on first one or more of the layers and the second antenna element is disposed on second one or more of the layers, which are different from the first one or more of the layers. Another antenna assembly includes a first subarray of the first antenna elements and a second subarray of the second antenna elements.
Abstract:
An antenna device includes a first dipole antenna, a second loop shaped antenna, a first feed line and a second feed line. The first dipole antenna operates at a first frequency band. The first dipole antenna includes a first portion and a second portion. The second loop shaped antenna operates at a second frequency band different from the first frequency band. A first terminal of the second loop shaped antennal is coupled to a second terminal of the first portion of the first dipole antenna. A second terminal of the second loop shaped antenna is coupled to a first terminal of the second portion of the first dipole antenna. The first feed line is coupled to the second terminal of the first portion of the first dipole antenna. The second feed line is coupled to the first terminal of the second portion of the first dipole antenna.
Abstract:
Examples of a metal-frame slot antenna with one or more matching circuits and apparatus thereof are described. A slot antenna may include a metallic frame, which may include a primary sheet with plural peripheral sides surrounding the primary sheet. The metallic frame may also include at least one slot. Each slot of the at least one slot may extend along one or more peripheral sides of the plural peripheral sides of the metallic frame such that the plural peripheral sides of the metallic frame are continuous without an opening. The at least one slot may include a first slot which may be generally U-shaped or contiguous along at least three peripheral sides of the plural peripheral sides.