Abstract:
A circuit board is configured so as to include not less than two wiring layers, an insulator layer for electric insulation between the wiring layers, and an inner-via-hole conductive member provided in the insulator layer in a thickness direction of the insulator layer, for electric connection between the wiring layers. The insulator layer is made of a composite material containing an organic resin and a material having a smaller thermal expansion coefficient than that of the organic resin, and includes a surface part, a core part, and a surface part laminated in the stated order, the surface part having a high content of the organic resin, the core part having a low content of the organic resin. The wiring layers have a land portion that is connected with the inner-via-hole conductive member, the land portion being embedded so as to be substantially in contact with the core part, and the inner-via-hole conductive member has a thickness substantially equal to a thickness of the core part. According to this configuration, a part of the metal foil is embedded in the insulator layer so as to be in contact with the core layer. Therefore, this makes it possible to provide a circuit board in which portions of the conductive material can be selectively compressed, and which hence is capable of ensuring stable connection between layers.
Abstract:
A compression function layer 60 is provided on at least one board surface. The compression function layer 60 adds a function of being compressed by receiving pressure in the direction of the board thickness to the resin board 10 which includes this layer. Thereby a sufficient pressure is applied to conductors 14.
Abstract:
An electrically insulating base material includes a core layer 102, a resin layer 101 on each surface of the core layer 102 and a conductive material 105 filled into through holes 104 formed in a thickness direction. On each surface of the electrically insulating base material, a metal foil 106 is laminated, and a laminate thus obtained is heated and pressed. A conductive filler in the conductive material 105 has a mean particle diameter equal to or larger than a thickness of the resin layer 101, and thus the conductive filler can be prevented from being diffused into the resin layer 101 in a heating and pressing process. As a result, the conductive filler can be densified, thereby allowing a printed wiring board with via hole connection having high connection reliability to be obtained.
Abstract:
A compression function layer 60 is provided on at least one board surface. The compression function layer 60 adds a function of being compressed by receiving pressure in the direction of the board thickness to the resin board 10 which includes this layer. Thereby a sufficient pressure is applied to conductors 14.
Abstract:
A circuit board includes an electrical insulator layer formed of a reinforcer sheet with density distribution in its in-plane direction, an electrical conductor filled in a plurality of inner via holes provided in the electrical insulator layer in its thickness direction, and a wiring layer connected to the electrical conductor. The inner via holes provided in a high-density portion of the reinforcer sheet are formed to have a smaller cross-section than the inner via holes provided in a low-density portion of the reinforcer sheet. In this manner, it is possible to provide a circuit board that can achieve a high-density wiring and an inner via connection resistance with less variation, when a base material including a reinforcer sheet with density distribution in its in-plane direction such as a glass-epoxy base material is used for an insulator layer.
Abstract:
A circuit board includes an electrical insulator layer formed of a reinforcer sheet with density distribution in its in-plane direction, an electrical conductor filled in a plurality of inner via holes provided in the electrical insulator layer in its thickness direction, and a wiring layer connected to the electrical conductor. The inner via holes provided in a high-density portion of the reinforcer sheet are formed to have a smaller cross-section than the inner via holes provided in a low-density portion of the reinforcer sheet. In this manner, it is possible to provide a circuit board that can achieve a high-density wiring and an inner via connection resistance with less variation, when a base material including a reinforcer sheet with density distribution in its in-plane direction such as a glass-epoxy base material is used for an insulator layer.
Abstract:
The present invention provides a prepreg and a circuit board that can achieve, e.g., low interstitial via connection resistance, excellent connection stability, and high durability, regardless of materials, physical properties, and a combination of the materials of an insulating layer. The present invention also provides a method for manufacturing the prepreg and the circuit board. The prepreg of the present invention includes a laminate including at least one first layer and at least one second layer. The first layer is an insulating layer that includes a resin. The second layer has pores that connect an upper and a lower surface of the second layer, and the upper and the lower surface of the second layer differ from each other in at least one selected from open are ratio and average pore diameter. Using this prepreg makes it possible to provide a circuit board that is characterized, e.g., by low interstitial via connection resistance, excellent connection stability, and high durability.
Abstract:
A connecting strength at a bonding site between a wiring layer 1c and a conductor 1d is enhanced by comparing a bonding strength between a wiring layer 14 provided by covering the conductor 1d on an insulating base 1a and the conductor 1d with a bonding strength between the wiring layer 1c and the insulating base 1a in an adjacency of the conductor to set the latter relatively lower.
Abstract:
A circuit board is configured so as to include not less than two wiring layers, an insulator layer for electric insulation between the wiring layers, and an inner-via-hole conductive member provided in the insulator layer in a thickness direction of the insulator layer, for electric connection between the wiring layers. The insulator layer is made of a composite material containing an organic resin and a material having a smaller thermal expansion coefficient than that of the organic resin, and includes a surface part, a core part, and a surface part laminated in the stated order, the surface part having a high content of the organic resin, the core part having a low content of the organic resin. The wiring layers have a land portion that is connected with the inner-via-hole conductive member, the land portion being embedded so as to be substantially in contact with the core part, and the inner-via-hole conductive member has a thickness substantially equal to a thickness of the core part. According to this configuration, a part of the metal foil is embedded in the insulator layer so as to be in contact with the core layer. Therefore, this makes it possible to provide a circuit board in which portions of the conductive material can be selectively compressed, and which hence is capable of ensuring stable connection between layers.
Abstract:
A circuit board includes an electrical insulator layer formed of a reinforcer sheet with density distribution in its in-plane direction, an electrical conductor filled in a plurality of inner via holes provided in the electrical insulator layer in its thickness direction, and a wiring layer connected to the electrical conductor. The inner via holes provided in a high-density portion of the reinforcer sheet are formed to have a smaller cross-section than the inner via holes provided in a low-density portion of the reinforcer sheet. In this manner, it is possible to provide a circuit board that can achieve a high-density wiring and an inner via connection resistance with less variation, when a base material including a reinforcer sheet with density distribution in its in-plane direction such as a glass-epoxy base material is used for an insulator layer.