摘要:
Explosive devices and assemblies are described herein for use in geologic fracturing. Components of energetic material used in the explosive devices can be initially separated prior to inserting the assembled system down a wellbore, then later combined prior to detonation. Some exemplary explosive units for insertion into a borehole for use in fracturing a geologic formation surrounding the borehole can comprise a casing comprising a body defining an internal chamber, a first component of an explosive positioned within the internal chamber of the casing, and an inlet communicating with the internal chamber through which a second component of the explosive mixture is deliverable into the internal chamber to comprise the explosive.
摘要:
Explosive devices and assemblies are described herein for use in geologic fracturing. Components of energetic material used in the explosive devices can be initially separated prior to inserting the assembled system down a wellbore, then later combined prior to detonation. Some exemplary explosive units for insertion into a borehole for use in fracturing a geologic formation surrounding the borehole can comprise a casing comprising a body defining an internal chamber, a first component of an explosive positioned within the internal chamber of the casing, and an inlet communicating with the internal chamber through which a second component of the explosive mixture is deliverable into the internal chamber to comprise the explosive.
摘要:
The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.
摘要:
Disclosed herein are embodiments of precursor components (or compositions thereof) that can be combined with one or more additional components (or compositions thereof) to form an explosive composition. The disclosed precursor components (or compositions thereof) can be handled and transported safely to a particular location where they can be mixed with liquid fuel to form an explosive composition. In particular disclosed embodiments, the precursor components (or compositions thereof) can comprise, consist essentially of, or consist of an oxidizer component, a metal component, or combinations thereof.
摘要:
The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.
摘要:
Disclosed herein are embodiments of precursor components (or compositions thereof) that can be combined with one or more additional components (or compositions thereof) to form an explosive composition. The disclosed precursor components (or compositions thereof) can be handled and transported safely to a particular location where they can be mixed with liquid fuel to form an explosive composition. In particular disclosed embodiments, the precursor components (or compositions thereof) can comprise, consist essentially of, or consist of an oxidizer component, a metal component, or combinations thereof.
摘要:
In disclosed explosive units for use in a wellbore, the casing can include a tubular outer body comprising grooves, pockets, or other variances in thickness that create stress concentrations that promote shear and tensile fragmentation instead of ductile expansion of the casing, which can negatively impact permeability of a wellbore. In other embodiments, the casing can comprise non-ductile and/or reactive material which responds to explosive or high temperature loading by brittle failure, disintegration, melting, burning, and/or chemically reacting with the energetic materials and/or the borehole environment. Such embodiments can enhance the permeability of the wellbore after detonation.
摘要:
Explosive geologic fracturing methods, devices, and systems can be used in combination with other geologic fracturing means, such as hydraulic fracturing methods, devices and systems, or other fluid-based fracturing means. An exemplary method comprises introducing an explosive system into a wellbore in a geologic formation, detonating the explosive system in the wellbore to fracture at least a first portion of the geologic formation adjacent to the wellbore, and introducing pressurized fluid into the wellbore to enhance the fracturing of the first portion of the geologic formation. Such multi-stage fracturing can further enhance the resulting fracturing of geologic formation relative to explosive fracturing alone.
摘要:
In disclosed explosive units for use in a wellbore, the casing can include a tubular outer body comprising grooves, pockets, or other variances in thickness that create stress concentrations that promote shear and tensile fragmentation instead of ductile expansion of the casing, which can negatively impact permeability of a wellbore. In other embodiments, the casing can comprise non-ductile and/or reactive material which responds to explosive or high temperature loading by brittle failure, disintegration, melting, burning, and/or chemically reacting with the energetic materials and/or the borehole environment. Such embodiments can enhance the permeability of the wellbore after detonation.
摘要:
Explosive geologic fracturing methods, devices, and systems can be used in combination with other geologic fracturing means, such as hydraulic fracturing methods, devices and systems, or other fluid-based fracturing means. An exemplary method comprises introducing an explosive system into a wellbore in a geologic formation, detonating the explosive system in the wellbore to fracture at least a first portion of the geologic formation adjacent to the wellbore, and introducing pressurized fluid into the wellbore to enhance the fracturing of the first portion of the geologic formation. Such multi-stage fracturing can further enhance the resulting fracturing of a geologic formation relative to explosive fracturing alone.