Abstract:
A computer-implemented method for designing a digital PCR (dPCR) experiment is provided. The method includes receiving, from a user, a selection of optimization type. The optimization type may be maximizing the dynamic range, minimizing the number of substrates including reaction sites needed for the experiment, determining a dilution factor, or determining the lower limit of detection, for example. The method further includes receiving, from the user, a precision measure for an experiment, and a minimum concentration of a target in a reaction site for the experiment. The method also includes determining a set of dPCR experiment design factors for the experiment based on the optimization type. The set of dPCR experiment design factors is then displayed to the user.
Abstract:
A computer-implemented method of generating a digital polymerase chain reaction (dPCR) result is provided. The method includes detecting a first set of emission data from a plurality of samples, each included in a sample region of a plurality of sample regions, at a first time amplification during an amplification period. The method further includes determining a positive or negative amplification determination for each sample of the plurality of samples based in part on the first set of emission data. A dPCR result is generated based on the positive or negative amplification determinations for the plurality of samples.
Abstract:
Systems and methods are used to display data obtained from a qPCR instrument. Each of two or more samples is probed with a first labeling probe and a second labeling probe. A first data set is received from a qPCR instrument at a first cycle number that includes for each sample a first labeling probe intensity, and a second labeling probe intensity. A second data set is received at a second cycle number that includes for each sample a first labeling probe intensity and a second labeling probe intensity. A first plot of first labeling probe intensity as a function of second labeling probe intensity is created using the first data set. A second plot of first labeling probe intensity as a function of second labeling probe intensity is created using the second data set. The first plot and the second plot are displayed in response to user defined input to provide dynamic and real-time analysis of genotyping data.
Abstract:
A computer-implemented method of generating a digital polymerase chain reaction (dPCR) result is provided. The method includes detecting a first set of emission data from a plurality of samples, each included in a sample region of a plurality of sample regions, at a first time during an amplification period. The method further includes determining a positive or negative amplification determination for each sample of the plurality of samples based in part on the first set of emission data. A dPCR result is generated based on the positive or negative amplification determinations for the plurality of samples.
Abstract:
Systems and methods are used to display data obtained from a qPCR instrument. Each of two or more samples is probed with a first labeling probe and a second labeling probe. A first data set is received from a qPCR instrument at a first cycle number that includes for each sample a first labeling probe intensity, and a second labeling probe intensity. A second data set is received at a second cycle number that includes for each sample a first labeling probe intensity and a second labeling probe intensity. A first plot of first labeling probe intensity as a function of second labeling probe intensity is created using the first data set. A second plot of first labeling probe intensity as a function of second labeling probe intensity is created using the second data set. The first plot and the second plot are displayed in response to user defined input to provide dynamic and real-time analysis of genotyping data.
Abstract:
Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample. Estimating the number of copies-per-unit-volume is based on the number of discrete processed sample portions determined to contain the at least one target nucleic acid therein.
Abstract:
Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample. Estimating the number of copies-per-unit-volume is based on the number of discrete processed sample portions determined to contain the at least one target nucleic acid therein.
Abstract:
A computer-implemented method for designing a digital PCR (dPCR) experiment is provided. The method includes receiving, from a user, a selection of optimization type. The optimization type may be maximizing the dynamic range, minimizing the number of substrates including reaction sites needed for the experiment, determining a dilution factor, or determining the lower limit of detection, for example. The method further includes receiving, from the user, a precision measure for an experiment, and a minimum concentration of a target in a reaction site for the experiment. The method also includes determining a set of dPCR experiment design factors for the experiment based on the optimization type. The set of dPCR experiment design factors is then displayed to the user.
Abstract:
Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample. Estimating the number of copies-per-unit-volume is based on the number of discrete processed sample portions determined to contain the at least one target nucleic acid therein.
Abstract:
A computer-implemented method of generating a digital polymerase chain reaction (dPCR) result is provided. The method includes detecting of emission data from a planiality of samples, each included in a sample region of a plurality of sample regions, at a first time amplification period. The method further includes determining a positive or negative amplification determination for each sample of the plurality of samples based in part on the first set of emission data, A dPCR result is generated based on the positive amplification determinations for the plurality of samples.