Abstract:
A vertical structure and a method of forming a vertical structure are disclosed. A partially processed semiconductor wafer is provided having all devise levels completed, including a topmost interlevel dielectric layer through which metallic vias are formed for electrical connection. A first metal level is formed. An IMD level is then formed by forming a blanket dielectric layer over the first metal level, patterning and etching the dielectric layer to form arrays of trenches passing through the dielectric layer, filling the trenches with a conducting material, and performing CMP. A number of metal level, IMD level pairs are formed, where the number could be zero. Bonding metal patterns are deposited, wires are bonded onto the bonding metal patterns and a passivation layer is formed.
Abstract:
A stacked image sensor and method for making the same are provided. The stacked image sensor includes an upper chip with a pixel array thereon. The second chip includes a plurality of column circuits and row circuits associated with the columns and rows of the pixel array and disposed in respective column circuit and row circuit regions that are arranged in multiple groups. Inter-chip bonding pads are formed on each of the chips. The inter-chip bonding pads on the second chip are arranged linearly and are contained within the column circuit regions and row circuit regions in one embodiment. In other embodiments, the inter-chip bonding pads are staggered with respect to each other. In some embodiments, the rows and columns of the pixel array include multiple signal lines and the corresponding column circuit regions and row circuit regions also include multiple inter-chip bonding pads.
Abstract:
A correlated double sampling (CDS) circuit for sampling first and second pixel signals, which are respectively transmitted via first and second data lines, in a pixel array. The CDS circuit includes first and second sampling circuits, an amplifier circuit and a control circuit. The control circuit controls the first sampling circuit to sample a reset level and a data level of the first pixel signal in a first sampling period, and controls the second sampling circuit to sample a reset level and a data level of the second pixel signal in a second sampling period. The control circuit controls the amplifier circuit to output the reset level and the data level of the first pixel signal in a first output period, and output the reset level and the data level of the second pixel signal in a second output period.
Abstract:
To mitigate kickback noise effect, the present invention provides a reference voltage generator for an analog-to-digital converter circuit. The reference voltage generator includes a bias generator, a bias converter and an output unit. The bias generator is used for generating a first bias voltage in accordance with a reference voltage. The bias converter is coupled to the bias generator and is used for converting the first bias voltage to a second bias voltage. The output unit is coupled to the bias converter and used for generating a first voltage to a load circuit in accordance with the second bias voltage.
Abstract:
A current steering digital-to-analog converter (DAC) is provided. At least two lower-resolution DACs are used for converting a high-resolution digital signal. One of the two lower-resolution DACs is used for converting the most significant bits (MSB) of the high-resolution digital signal. The other of the two lower-resolution DACs is used for converting the least significant bits (LSB) of the high-resolution digital signal. By such arrangement, a device mismatch problem is avoided and the chance of variation occurrence during manufacturing process is reduced. The arrangement also simplifies the layout in the significantly scaled-down chip area.
Abstract:
The invention provides a transient voltage detecting circuit for detecting a transient voltage occurring at a power supply or a ground of an electronic system. The circuit according to the invention includes a plurality of detecting units of which the outputs are initially latched by at least one voltage source. The circuit also includes a detecting device outputting a first logic according to the initial outputs of all of the detecting units. When the transient voltage occurs, it is ensured that the logic of the output of one of the detecting units is changed by the transient voltage or the decayed transient voltage, such that the decision device renewably outputs a second logic to trigger a resetting device of the electronic system in accordance with the outputs of all of the detecting units.
Abstract:
A current steering digital-to-analog converter (DAC) is provided. At least two lower-resolution DACs are used for converting a high-resolution digital signal. One of the two lower-resolution DACs is used for converting the most significant bits (MSB) of the high-resolution digital signal. The other of the two lower-resolution DACs is used for converting the least significant bits (LSB) of the high-resolution digital signal. By such arrangement, a device mismatch problem is avoided and the chance of variation occurrence during manufacturing process is reduced. The arrangement also simplifies the layout in the significantly scaled-down chip area.
Abstract:
An image sensing device includes a pixel sensing data processing unit, for receiving a pixel line sensing data to output first and second outputs. A controller receives the first output from the pixel sensing data processing unit, checks whether the pixel line sensing data include at least one defective pixel. If it has defective pixel, a correction rule is applied to compare the status data with a previously defective pixel. The correction rule includes comparing a state data of the previous defect pixels. If the defective pixel belongs to a regular pattern, the defective pixel is not corrected. A correction unit receives the second output and receives the correction status from the controller, and to correct the pixel and exports a display data. A recording unit records the status data of the defective pixel detected by the controller for comparing the status data of the next pixel line sensing data.
Abstract:
An integrated circuit comprises a semiconductor substrate and a color image sensor array on the substrate. The color image sensor array has a first configuration of color pixels for collecting color image data, and at least one crosstalk test pattern on the substrate proximate the color image sensor array. The crosstalk test pattern includes a plurality of color sensing pixels arranged for making color crosstalk measurements. The test pattern configuration is different from the first configuration.
Abstract:
Embodiments of the present invention provide a correlated double sampling (CDS) circuit and a CMOS image sensor unit using the CDS circuit. The CDS circuit shifts levels of sampled sensing signal and reset signal with equal amounts. Thus a voltage difference of the sampled sensing signal and the reset signal remains unchanged, and their levels may fall within a linear input range by adjusting their levels. Compared to a conventional CDS circuit, a gain of the CDS circuit provided by the embodiment of the present invention is not reduced, and thus a design complexity of a rear circuit thereof is lower, and an induced noise is relatively low. Furthermore, the CMOS image sensor unit using the CDS circuit provided by the embodiment also has these advantages.