Abstract:
Disclosed are an anisotropic conductive film and a method of fabricating the same suitable for realizing an ultra-fine pitch COG (Chip On Glass) application. The anisotropic conductive film of the present invention is characterized in that 1-30% by volume nonconductive particles (polymer, ceramic, etc.) having a diameter {fraction (1/20)}-null times as large as the conductive particles are added. According to the present invention, the anisotropic conductive film can prevent an electrical shorting between the bumps in bonding ultra fine pitch flip chip as well as in COG-bonding the driver IC. Accordingly, the anisotropic conductive film can be widely used in a communication field using ACA flip chip technology and universal flip chip packages.
Abstract:
Disclosed is a method for manufacturing a low dielectric constant conductive adhesive that is appropriate for a radio frequency packaging application. This method is characterized by mixing a thermosetting resin with surface-treated conductive particles and non-conductive particles for prevention of agglutination and thereby forming the conductive adhesive. The manufactured conductive adhesive is useful for a bonding material of the radio frequency packaging. According to the present invention, it is possible to obtain a flip chip bonding having superior mechanical and electrical performance compared with the conventional flip chip bonding art. Also, since the adhesive has a low high frequency loss and a low dielectric constant, it is possible to realize a flip chip package having a superior electrical performance. The conductive adhesive is particularly useful for the flip chip packaging of a device having a bandwidth of microwave and millimeter wave.