摘要:
There is disclosed a method of manufacturing a flash memory device by which an insulating film spacer is formed on both sidewalls of a gate electrode and a drain region is then formed. Thus, the present invention can improve coverage during a deposition process for forming a select gate and reduce the overlapping area of a floating gate and a drain region. Therefore, as the resistance of the select gate itself is reduced depending on the coverage, the present invention can increase the operating speed of a device and can improve the erase characteristic by F-N tunneling due to reduced overlapping area.
摘要:
A method of manufacturing a flash memory device. According to the invention, a floating gate can be formed and a distance between cells can be secured sufficiently by using one conductive layer without using a SA-STI process that cannot be applied to the manufacture process of high-integrated semiconductor devices. It is therefore possible to minimize an interference phenomenon between neighboring cells. Furthermore, an isolation film is etched after a photoresist film covering only a high-voltage transistor region is formed, or a gate oxide film is formed after a semiconductor substrate is etched at a thickness, which is the same as that of the gate oxide film of the high-voltage transistor region, so that a step between the cell region and the high-voltage transistor region is the same. Accordingly, the coupling ratio can be increased even by the gate oxide film of the high-voltage transistor region, which is thicker than the tunnel oxide film of the cell region. In addition, damage to a tunnel oxide film, a semiconductor substrate or a floating gate while an isolation film is etched at a predetermined depth in order to control the EFH can be prevented by controlling the EFH in such a manner than conductive layer spacers are formed on sidewalls of the floating gate and the isolation film is further etched.
摘要:
A method of forming a resistor of a flash memory device includes etching an isolation structure provided on a semiconductor substrate to form a first trench. A polysilicon structure is formed within the first trench of the isolation structure. A dielectric layer is formed on the polysilicon structure. A polysilicon layer is formed over the dielectric layer. The polysilicon layer is etched to define second and third trenches in the polysilicion layer. The second and third trenches separates the polysilicon layer into first, second, and third sections, where the first and third section contact the polysilicon structure, and the second section is separated from the first and third sections. An insulating film is formed over the etched polysilicion layer, the insulating film filling the second and third trenches. the first section of the polysilicon layer, the polysilicon structure, and the third section of the polysilicon layer define a resistor.
摘要:
A method of forming a select line in a NAND type flash memory device is disclosed. In the select line having a stack structure of the floating gate, the dielectric film and the control gate, the control gate is patterned so that a first projection is formed at the edge of the control gate, and the floating gate is formed by means of the self-aligned etch process. At this time, the floating gate is patterned so that a second projection the one end of which overlaps the first projection is formed at the edge of the floating gate. Next, the first and second projections are electrically connected using the contact plugs and the metal line, whereby a voltage is simultaneously applied to the control gate of a low resistance and the floating gate of a high resistance. Therefore, the present invention can minimize generation of voltage drop to improve electrical characteristics, and obviate a process of removing the dielectric film for electrically connecting the floating gate and the control gate to simplify the process steps.
摘要:
A non-volatile memory device according to an aspect of the present disclosure includes a substrate, a plurality of word lines stacked over the substrate and having a stepwise pattern, wherein the plurality of word lines each have a pad region, and a plurality of contact plugs coupled to the respective pad regions of the word lines, wherein a width of a pad region of a first one of the plurality of word lines is greater than a width of a pad region of a second word line lower than the first word line.
摘要:
A method of forming a semiconductor device includes etching a semiconductor substrate to form a first trench having a first width and a first depth; etching the semiconductor substrate to form a second trench having a second width and a second depth, the second trench overlapping the first trench, the second width being greater than the first width, the second depth being less than the first depth, whereby a trench having a dual structure is formed; and forming a first isolation structure within the trench having the dual structure. An embodiment of the present invention relates to a method of forming an isolation structure of a semiconductor device.
摘要:
A method of forming a resistor of a flash memory device includes etching an isolation structure provided on a semiconductor substrate to form a first trench. A polysilicon structure is formed within the first trench of the isolation structure. A dielectric layer is formed on the polysilicon structure. A polysilicon layer is formed over the dielectric layer. The polysilicon layer is etched to define second and third trenches in the polysilicion layer. The second and third trenches separates the polysilicon layer into first, second, and third sections, where the first and third section contact the polysilicon structure, and the second section is separated from the first and third sections. An insulating film is formed over the etched polysilicion layer, the insulating film filling the second and third trenches. the first section of the polysilicon layer, the polysilicon structure, and the third section of the polysilicon layer define a resistor.
摘要:
A method of manufacturing a flash memory device. According to the invention, a floating gate can be formed and a distance between cells can be secured sufficiently by using one conductive layer without using a SA-STI process that cannot be applied to the manufacturing process of highly integrated semiconductor devices. It is therefore possible to minimize interference between neighboring cells.
摘要:
A method of manufacturing a flash memory device includes forming a gate over a semiconductor substrate in which a cell region, a low voltage region and a high voltage region are defined. First ions are implanted into the cell region to form doped junctions in the cell region, the low voltage region and the high voltage region being covered to prevent the first ions from being implanted into the low voltage region and the high voltage region. The first ions implanted into the cell region are activated using a rapid annealing process. The rapid annealing process is performed for no more than 10 minutes. The rapid annealing process minimizes an occurrence of Transient Enhanced Diffusion at the cell region.
摘要:
The present invention relates to a flash memory cell and method of manufacturing the same, and programming/erasing/reading method in the flash memory cell. According to the present invention, a source region and a drain region are first formed and a tunnel oxide film is then formed. Therefore, it is possible to prevent damage of the tunnel oxide film due to an ion implantation process. Further, independent two channel regions are formed below the floating gate. Thus, it is possible to store data of two or more bits at a single cell. In addition, the tunnel oxide film, the floating gate and the dielectric film having an ONO structure are formed at a given regions. It is thus possible to reduce the steps of a process and improve an electrical characteristic and integration level of a device.