Abstract:
One embodiment relates to a pillar-supported array of micro electron lenses. The micro-lens array includes a base layer on a substrate, the base layer including an array of base electrode pads and an insulating border surrounding the base electrode pads so as to electrically isolate the base electrode pads from each other. The micro-lens array further includes an array of lens holes aligned with the array of base electrode pads and one or more stacked electrode layers having openings aligned with the array of lens holes. The micro-lens array further includes one or more layers of insulating pillars, each layer of insulating pillars supporting a stacked electrode layer. Another embodiment relates to a method of fabricating a pillar-supported array of micro electron lenses. Other embodiments, aspects and features are also disclosed.
Abstract:
One embodiment relates to a pattern data system for maskless electron beam lithography. The system includes a renderer that receives pre-exposure die image data, performs rendering of the pre-exposure die image data to generate raster data. The system further includes a plurality of data distributors communicatively coupled to the renderer. Each data distributor adapts the raster data to characteristics of an associated pattern writer. Other embodiments, aspects and feature are also disclosed.
Abstract:
One embodiment relates to a method of measuring overlay errors for a programmable pattern, area-imaging electron beam lithography apparatus. Patterned cells of an overlay measurement target array may be printed in swaths such that they are superposed on patterned cells of a first (base) array. In addition, the overlay array may have controlled-exposure areas distributed within the swaths. The superposed cells of the overlay and base arrays are imaged. The overlay errors are then measured based on distortions between the two arrays in the image data. Alternatively, non-imaging methods, such as using scatterometry, may be used. Another embodiment relates to a method for correcting overlay errors for an electron beam lithography apparatus. Overlay errors for a pattern to be printed are determined based on within-swath exposure conditions. The pattern is then pre-distorted to compensate for the overlay errors. Other embodiments, aspects and features are also disclosed.