Abstract:
A series of peptides with divergent confirmations including structures of formula (1A), (1B), (2) and (3) are provided. In the formula, wherein U, G, A, B, R1, R2 and T are as defined in the specification. The divergent peptides disclosed in the present invention are characterized in a mineral binding affinity function.
Abstract:
A method for treating low bone mineral density associated with osteopenia, osteoporosis, and other diseases is disclosed. The method comprises administrating a composition comprising a 3,5-dihydroxypentanoic acid derivative according to Formula I to a mammal. A compound of 3,5-dihydroxypentanoic acid derivative having a structure according to Formula I or Formula II is also disclosed.
Abstract:
The present invention provides a method of additive manufacturing a 3D-printed article, comprising: (a) printing and depositing one or more layers of a slurry by using a 3D printer, wherein the slurry comprises a ceramic powder composition; (b) further injecting an oil around the one or more layers of slurry, wherein the height of the injected oil is lower than the height of the slurry; (c) repeating steps (a) and (b) until a main body with desired geometric shape is obtained; and (d) sintering the main body by heating to obtain the 3D-printed article wherein the temperature of a printing carrier of the 3D printer is from 30 to 80° C.
Abstract:
The present invention relates to a method for treating or alleviating an osteoporosis in a subject. The method comprises steps of identifying the subject having the osteoporosis, and administering to the subject an effective amount of a composition that increases a level of Discoidin Domain Receptor 1 (DDR1) protein in the subject.
Abstract:
An automatic cell isolation and collection system for sorting out target cells from a sample includes a crush module, a centrifuge module, a transport module, and a control unit. The centrifuge module includes centrifuge tubes and a magnetic mechanism providing a magnetically attractive force to at least one of the centrifuge tubes. The control unit electrically communicates with the crush module, the centrifuge module, and the transport module, and controls operation of the crush module, transport of the sample via the transport module after the sample is crushed by the crush module, centrifugation of the centrifuge module, and operation of the magnetic mechanism for providing the magnetically attractive force.
Abstract:
A bone nail apparatus includes a bone nail, a light source unit and a focalizing unit. The bone nail has a tube wall and at least one through hole. The tube wall is enclosed to form a receiving space. The at least one through hole extends through the tube wall and communicates with the receiving space. The light source unit includes a light emitter and at least one light transmission tube. The at least one light transmission tube is connected to the light emitter and receives a light therefrom. The at least one light transmission tube is received in the receiving space of the bone nail. Each light transmission tube has a light-outputting end aligned with a respective one of the at least one through hole. The focalizing unit has a light-receiving face facing one of the at least one through hole.
Abstract:
An automatic cell isolation and collection system for sorting out target cells from a sample includes a crush module, a centrifuge module, a transport module, and a control unit. The centrifuge module includes centrifuge tubes and a magnetic mechanism providing a magnetically attractive force to at least one of the centrifuge tubes. The control unit electrically communicates with the crush module, the centrifuge module, and the transport module, and controls operation of the crush module, transport of the sample via the transport module after the sample is crushed by the crush module, centrifugation of the centrifuge module, and operation of the magnetic mechanism for providing the magnetically attractive force.
Abstract:
A method for bone regeneration which comprises administering a short term release composition into a bone area of a subject in need thereof, wherein the composition comprises a poly(lactic-co-glycolic acid) cross-linked alendronate (PLGA-ALN), wherein the composition releases the alendronate into the bone area, wherein the bone tissue of the bone area is exposed in situ to a therapeutically effective amount of the alendronate over 9 days.
Abstract:
The present invention provides a method of additive manufacturing a 3D-printed article, comprising: (a) printing and depositing one or more layers of a slurry by using a 3D printer, wherein the slurry comprises a ceramic powder composition; (b) further injecting an oil around the one or more layers of slurry, wherein the height of the injected oil is lower than the height of the slurry; (c) repeating steps (a) and (b) until a main body with desired geometric shape is obtained; and (d) sintering the main body by heating to obtain the 3D-printed article wherein the temperature of a printing carrier of the 3D printer is from 30 to 80° C.
Abstract:
The present invention relates to a gold fluorescence resonance energy transfer nanoprobe comprising a gold fluorescence donor, a gold fluorescence acceptor, and a linker fragment that connects the gold fluorescence donor and the gold fluorescence acceptor, wherein the fluorescence resonance energy transfer is carried out between the gold fluorescence donor and the gold fluorescence acceptor. This all gold probe employing fluorescence resonance energy transfer technique can be used for detecting diseases such as arthritis, osteoporosis, and cancer metastasis.