摘要:
According to one embodiment, a secondary battery including an electrode and an aqueous electrolyte is provided. The electrode includes a resin current collector. The resin current collector includes a resin matrix and an electro-conductive filler. The aqueous electrolyte includes water.
摘要:
A nonaqueous electrolyte battery includes: a positive electrode containing a positive electrode active material made of a compound represented by a compositional formula of LiMn1-x-yFexAyPO4 (wherein A is at least one selected from the group consisting of Mg, Ca, Al, Ti, Zn and Zr, 0≤x≤0.3, and 0≤y≤0.1); a negative electrode containing a negative electrode active material made from a titanium composite oxide; and a nonaqueous electrolyte, wherein a ratio (IP—F/IP—O) of a peak intensity (IP—F) of a P—F bond to a peak intensity (IP—O) of a P—O bond on the surface of the positive electrode, which are measured by X-ray photoelectron spectroscopic analysis, is 0.4 or more and 0.8 or less.
摘要:
According to an embodiment, there is provided an electrode including an active material-containing layer. A logarithmic differential pore volume distribution curve of the active material-containing layer by a mercury intrusion method includes first and second peaks. The first peak is a local maximum value in a range where a pore size is from 0.1 μm or more to 0.5 μm or less. The second peak is a local maximum value in a range where the pore size is from 0.5 μm or more to 1.0 μm or less. An intensity A1 of the first peak and an intensity A2 of the second peak satisfy 0.1≤A2/A1≤0.3. A density of the active material-containing layer is from 2.9 g/cm3 or more to 3.3 g/cm3 or less.
摘要:
According to one embodiment, provided is a secondary battery including a positive electrode, a negative electrode, and an electrolyte. The negative electrode includes a niobium-titanium composite oxide having fluorine atoms on at least part of a surface the niobium-titanium composite oxide. An abundance ratio AF of fluorine atoms, an abundance ratio ATi of titanium atoms, and an abundance ratio ANb of niobium atoms on a surface of the negative electrode according to X-ray photoelectron spectroscopy satisfy a relationship of 3.5≤AF/(ATi+ANb)≤50.
摘要:
According to one embodiment, an electrode is provided. A length of a first active material portion along a first direction is within a range of 0.7T or more and 0.95T or less with respect to a thickness T of an active material-containing layer. The first direction is parallel to a thickness direction. A second active material portion further contains solid electrolyte particles. A ratio E1/E2 is 0 or more and 0.01 or less. The ratio E1/E2 represents a ratio of a content E1 of the solid electrolyte particles per unit area in the first active material portion (including 0) to a content E2 of the solid electrolyte particles per unit area in the second active material portion.
摘要:
A nonaqueous electrolyte battery according to one embodiment includes a negative electrode, a positive electrode and a nonaqueous electrolyte. The negative electrode includes a negative electrode active material-containing layer. The negative electrode active material-containing layer contains a negative electrode active material containing an orthorhombic Na-containing niobium titanium composite oxide. The positive electrode includes a positive electrode active material-containing layer. The positive electrode active material-containing layer contains a positive electrode active material. A mass C [g/m2] of the positive electrode active material per unit area of the positive electrode and a mass A [g/m2] of the negative electrode active material per unit area of the negative electrode satisfy the formula (1): 0.95≤A/C≤1.5.
摘要:
A nonaqueous electrolyte battery comprising:a positive electrode including a positive electrode active material layer containing a lithium iron manganese phosphate composite having an olivine structure; anda negative electrode including a negative electrode active material layer containing a titanium-containing metal oxide composite,wherein an atomic concentration of manganese is 1 atm % or more and 15 atm % or less in a region from a surface to a depth D of the negative electrode active material layer and the depth D is more than 0 nm and 10 nm or less.
摘要:
According to one embodiment, a nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The negative electrode includes a negative electrode current collector and a negative electrode mixed-material layer on the negative electrode current collector. The negative electrode mixed-material layer includes a titanium-containing metal oxide and a binder including an acrylic resin. The negative electrode satisfies α/β>1.36×10−2, where “α” is a peel strength (N/m) between the current collector and the negative electrode mixed-material layer, and “β” is a cutting strength (N/m) according to a surface and interfacial cutting method in the negative electrode mixed-material layer.
摘要:
A nonaqueous electrolyte battery includes a positive electrode, a negative electrode and a nonaqueous electrolyte. The positive electrode contains active material particles and a coating material. The active material particles are represented by any one of the following formulae (1) to (3): LixM1yO2 (1) LizM22wO4 (2) LisM3tPO4 (3) and have an average particle diameter of 0.1 to 10 μm. The coating material comprises at least particles having an average particle diameter of 60 nm or less or layers having an average thickness of 60 nm or less. The particles or the layers contain at least one element selected from the group consisting of Mg, Ti, Zr, Ba, B and C.
摘要:
According to one embodiment, a non-aqueous electrolyte battery includes an outer package, a positive electrode housed in the outer package, a negative electrode housed with a space from the positive electrode in the outer package and including an active material, and a non-aqueous electrolyte filled in the outer package. The active material includes a lithium-titanium composite oxide particle, and a coating layer formed on at least a part of the surface of the particle and including at least one metal selected from the group consisting of Mg, Ca, Sr, Ba, Zr, Fe, Nb, Co, Ni, Cu and Si, an oxide of at least one metal selected from the group or an alloy containing at least one metal selected from the group.