摘要:
According to one embodiment, a light emitting element includes n-type and p-type semiconductor layers and a light emitting unit. The light emitting unit is provided between the n-type semiconductor layer and the p-type semiconductor layer, the light emitting unit emits light with a peak wavelength of not less than 530 nm. The light emitting unit includes an n-side barrier layer and a first light emitting layer. The first light emitting layer includes a first barrier layer provided between the n-side barrier layer and the p-type semiconductor layer, a first well layer contacting the n-side barrier layer between the n-side barrier layer and the first barrier layer, a first AlGaN layer provided between the first well layer and the first barrier layer and including Alx1Ga1-x1N (0.15≦x1≦1), and a first p-side InGaN layer provided between the first AlGaN layer and the first barrier layer and including Inya1Ga1-ya1N (0
摘要:
According to one embodiment, a semiconductor light emitting element includes a light reflecting layer, first second, third and fourth semiconductor layers, first and second light emitting layers, and a first light transmitting layer. The second semiconductor layer is provided between the first semiconductor layer and the light reflecting layer. The first light emitting layer is provided between the first and second semiconductor layers. The first light transmitting layer is provided between the second semiconductor layer and the light reflecting layer. The third semiconductor layer is provided between the first light transmitting layer and the light reflecting layer. The fourth semiconductor layer is provided between the third semiconductor layer and the light reflecting layer. The second light emitting layer is provided between the third and fourth semiconductor layers. The light reflecting layer is electrically connected to one selected from the third and fourth semiconductor layers.
摘要:
A light-emitting electric-power generation module according to an embodiment includes a photoelectric conversion element for emitting light and generating electric power, a light-emission controller configured to control light emission of the photoelectric conversion element, an electric-power generation controller configured to control electric-power generation of the photoelectric conversion element, and a switching unit configured to switch light-emission state and electric-power generation state of the photoelectric conversion element.
摘要:
According to one embodiment, a crystal growth method includes forming a first member at at least a part of a bottom portion of a hole in a structure body. The hole includes the bottom portion and a side portion. The first member includes a first element. The first element is not adhered to at least a part of the side portion in the forming the first member. The crystal growth method includes growing a crystal member inside the hole by supplying a source material to the hole after the forming the first member. The source material includes a second element. The crystal member includes the second element.
摘要:
A light-emitting electric-power generation module according to an embodiment includes a photoelectric conversion element for emitting light and generating electric power, a light-emission controller configured to control light emission of the photoelectric conversion element, an electric-power generation controller configured to control electric-power generation of the photoelectric conversion element, and a switching unit configured to switch light-emission state and electric-power generation state of the photoelectric conversion element.
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, a light emitting layer, a first intermediate layer, and a second intermediate layer. The n-type and p-type semiconductor layers include a nitride semiconductor. The light emitting layer is provided between the n-type and p-type semiconductor layers, and includes barrier layers and a well layer. A bandgap energy of the well layer is less than that of the barrier layers. The first intermediate layer is provided between the light emitting layer and the p-type semiconductor layer. A bandgap energy of the first intermediate layer is greater than that of the barrier layers. The second intermediate layer includes first and second portions. The first portion is in contact with a p-side barrier layer most proximal to the p-type semiconductor layer. The second portion is in contact with the first intermediate layer.
摘要:
According to one embodiment, a semiconductor light emitting element includes a light reflecting layer, first second, third and fourth semiconductor layers, first and second light emitting layers, and a first light transmitting layer. The second semiconductor layer is provided between the first semiconductor layer and the light reflecting layer. The first light emitting layer is provided between the first and second semiconductor layers. The first light transmitting layer is provided between the second semiconductor layer and the light reflecting layer. The third semiconductor layer is provided between the first light transmitting layer and the light reflecting layer. The fourth semiconductor layer is provided between the third semiconductor layer and the light reflecting layer. The second light emitting layer is provided between the third and fourth semiconductor layers. The light reflecting layer is electrically connected to one selected from the third and fourth semiconductor layers.
摘要:
According to one embodiment, a nitride semiconductor device includes a foundation layer and a functional layer. The foundation layer is formed on an Al-containing nitride semiconductor layer formed on a silicon substrate. The foundation layer has a thickness not less than 1 micrometer and including GaN. The functional layer is provided on the foundation layer. The functional layer includes a first semiconductor layer. The first semiconductor layer has an impurity concentration higher than an impurity concentration in the foundation layer and includes GaN of a first conductivity type.
摘要:
According to one embodiment, an inspection apparatus of a semiconductor device includes a first probe configured to contact a first portion of the semiconductor device, a conductive member configured to oppose a second portion of the semiconductor device, and a detector configured to apply a first voltage between the semiconductor device and the first probe, to apply a conductive member voltage between the semiconductor device and the conductive member, and to detect a current flowing in the first probe. The first voltage has a first polarity of one of positive or negative when referenced to a potential of the semiconductor device. The conductive member voltage has a second polarity of the other of positive or negative when referenced to the potential of the semiconductor device.
摘要:
According to one embodiment, a semiconductor light emitting element includes a light reflecting layer, first second, third and fourth semiconductor layers, first and second light emitting layers, and a first light transmitting layer. The second semiconductor layer is provided between the first semiconductor layer and the light reflecting layer. The first light emitting layer is provided between the first and second semiconductor layers. The first light transmitting layer is provided between the second semiconductor layer and the light reflecting layer. The third semiconductor layer is provided between the first light transmitting layer and the light reflecting layer. The fourth semiconductor layer is provided between the third semiconductor layer and the light reflecting layer. The second light emitting layer is provided between the third and fourth semiconductor layers. The light reflecting layer is electrically connected to one selected from the third and fourth semiconductor layers.