摘要:
According to one embodiment, a surface emitting quantum cascade laser includes: a first surface that emits laser light; a second surface opposite to the first surface; an active layer provided between the first surface and the second surface; a photonic crystal provided between the active layer and the first surface or between the active layer and the second surface, the photonic crystal having a predetermined periodicity; a first electrode located on the first surface outside a region where the laser light is emitted; a second electrode provided on the second surface, the photonic crystal being located between the first surface and the second electrode; and a third electrode provided on the second surface and separated from the second electrode, the active layer extending between the first surface and the second electrode and between the first surface and the third electrode.
摘要:
A quantum cascade laser includes light-emitting quantum well layers configured to emit infrared laser light by an intersubband transition; and injection quantum well layers configured to relax carrier energy. The light-emitting quantum well layers and the injection quantum well layers are stacked alternately. The injection quantum well layers relax the energy of carriers injected from the light-emitting quantum well layers, respectively. The light-emitting quantum well layers and the injection quantum well layers including barrier layers. At least one barrier layer includes first and second regions of a first ternary compound semiconductor, and a binary compound semiconductor thin film. The binary compound semiconductor thin film is provided between the first and second regions. The first ternary compound semiconductor includes Group III atoms and a Group V atom. The binary compound semiconductor thin film includes one Group III atom of the first ternary compound semiconductor and the Group V atom.
摘要:
A photoelectric conversion element of an embodiment is a photoelectric conversion element which performs photoelectric conversion by receiving illumination light having n light emission peaks having a peak energy Ap (eV) (where 1≦p≦n and 2≦n) of 1.59≦Ap≦3.26 and a full width at half maximum Fp (eV) (where 1≦p≦n and 2≦n), wherein the photoelectric conversion element includes m photoelectric conversion layers having a band gap energy Bq (eV) (where 1≦q≦m and 2≦m≦n), and the m photoelectric conversion layers each satisfy the relationship of Ap−Fp
摘要:
According to one embodiment, a sensing system includes a reflective optical element, and an optical device. The reflective optical element includes a plurality of optical structures arranged along a first plane. The optical device includes an element face. The optical device is configured to perform a first operation and a second operation. The optical device is configured to emit infrared rays from the element face in the first operation. The optical device is configured to detect the infrared rays reflected by the reflective optical element and incident on the element face in the second operation.
摘要:
A quantum cascade element includes a first substrate, a quantum cascade layer and a second substrate. The quantum cascade layer is provided at a front surface side of the first substrate. The quantum cascade layer includes a plurality of quantum well layers and a plurality of barrier layers alternately stacked in a direction perpendicular to the front surface of the first substrate. The second substrate is bonded to the first substrate with the quantum cascade layer interposed. The second substrate includes a photonic crystal contacting the quantum cascade layer. The photonic crystal includes a plurality of recesses at a side contacting the quantum cascade layer. The plurality of recesses faces an uppermost layer of the plurality of barrier layers.
摘要:
According to one embodiment, a gas analysis device includes: a base including a concave portion; a window includes a first film and a second film; an optical part that is located at a side of the window opposite to the base side and includes a light projector and a light receiver; and an optical path length controller that is located between the base and the window and has a controllable thickness. The concave portion includes a first sidewall that is oblique to a surface of the base, and a second sidewall that is oblique to the surface of the base. An oblique direction of the second sidewall is opposite to an oblique direction of the first sidewall. The light projector is configured to irradiate light toward the first sidewall. The light receiver is configured to convert light reflected by the second sidewall.
摘要:
A surface-emitting quantum cascade laser of an embodiment includes a semiconductor stacked body, an upper electrode, and a lower electrode. The semiconductor stacked body includes an active layer that includes a quantum well layer and emits infrared laser light, a first semiconductor layer that includes a photonic crystal layer in which pit parts constitute a rectangular grating, and a second semiconductor layer. The upper electrode is provided on the first semiconductor layer. The lower electrode is provided on a lower surface of a region of the second semiconductor layer overlapping at least the upper electrode. The photonic crystal layer is provided on the upper surface side of the first semiconductor layer. In plan view, the semiconductor stacked body includes a surface-emitting region including the photonic crystal layer and a current injection region. The upper electrode is provided on the current injection region.
摘要:
According to one embodiment, a semiconductor light emitting device includes: a conductive layer; a first stacked body; a second stacked body; a first light-transmissive electrode; and a first interconnect electrode. The first stacked body includes a first semiconductor layer and a second semiconductor layer. The second semiconductor layer is provided between the first semiconductor layer and the conductive layer. The first light emitting layer is provided between the first semiconductor layer and the second semiconductor layer. The second stacked body includes a third semiconductor layer, a fourth semiconductor layer, and a second light emitting layer. The fourth semiconductor layer is provided between the third semiconductor layer and the conductive layer. The second light emitting layer is provided between the third semiconductor layer and the fourth semiconductor layer. The first interconnect electrode is provided between the second semiconductor layer and the third semiconductor layer.
摘要:
Provided is a surface emitting quantum cascade laser, including: semiconductor layers other than a laser active layer and the laser active layer; and a square-lattice or rectangular-lattice photonic crystal on the laser active layer, wherein a unit lattice of the square-lattice or rectangular-lattice photonic crystal is made of a composition A, and a composition B having a refractive index different from a refractive index of the composition A, and wherein the composition A is a compound semiconductor composition or metal composition, the composition B is a compound semiconductor composition, and the unit lattice of the square-lattice or rectangular-lattice photonic crystal has the following structure: a columnar structure body having a pentagonal bottom face and being made of the composition B is provided in a central part of the columnar structure body having the square or rectangular bottom face and being made of the composition A.
摘要:
A surface-emitting semiconductor light-emitting device includes a first semiconductor layers, an active layer on the first semiconductor layer, a photonic crystal layer on the active layer and a second semiconductor layer on the photonic crystal layer. The photonic crystal layer include first protrusions in a first region and second protrusions in a second region. A spacing of adjacent first protrusions is greater than a spacing of adjacent second protrusions. The second semiconductor layer includes a first layer and a second layer on the first layer. The first layer covers first and second protrusions so that a first space remains between the adjacent first protrusions. The first layer includes a first portion provided between the adjacent second protrusions. The second layer includes a second portion provided between the adjacent first protrusions. The first space between the adjacent first protrusions is filled with the second portion of the second layer.