Abstract:
According to an embodiment, a signal processing device includes a first integrator, a second integrator, a switcher, and a calculator. The first integrator is configured to integrate a current represented by a reference waveform equivalent to a normal waveform in a case of no pileup phenomenon regarding the current to calculate a first electrical charge. The second integrator is configured to integrate a current output from a photoelectric converter to calculate a second electrical charge. The switcher is configured to, when a pileup phenomenon has occurred, perform switching either to a state in which the first and second electrical charges are output or to a state in which the first electrical charge and a reference charge are output. The calculator is configured to calculate a first difference charge between the first and second electrical charges, and calculate a second difference charge between the first electrical charge and the reference charge.
Abstract:
According to one embodiment, a solid-state imaging device includes: a first inorganic photoelectric converter; a semiconductor substrate that includes a light-receiving face to which light is to be incident and a circuit-formed surface on which a circuit including a readout circuit is formed, the light-receiving face facing the first inorganic photoelectric converter, the semiconductor substrate including a second inorganic photoelectric converter thereinside; and a first part including a microstructure arranged between the first inorganic photoelectric converter and the second inorganic photoelectric converter.
Abstract:
According to an embodiment, a signal processing device includes an integrator, a first analog-to-digital converter, and a histogram creator. The integrator is configured to integrate an electrical charge corresponding to electromagnetic waves. The first analog-to-digital converter is configured to perform an analog-to-digital conversion operation that generates digital data of the electrical charge using an integration output from the integrator, on a parallel with an integration operation performed by the integrator. The histogram creator is configured to create a histogram that represents an energy distribution of the electromagnetic waves, from the digital data generated by the first analog-to-digital converter.
Abstract:
According to one embodiment, an imaging lens includes a first optical system and a microlens array. The first optical system includes an optical axis. The microlens array is provided between the first optical system and an imaging element. The microlens array includes microlens units provided in a first plane. The imaging element includes pixel groups. Each of the pixel groups includes pixels. The microlens units respectively overlap the pixel groups when projected onto the first plane. The first optical system includes an aperture stop, and first, second, and third lenses. The first lens is provided between the aperture stop and the microlens array, and has a positive refractive power. The second lens is provided between the first lens and the microlens array, and has a negative refractive power. The third lens is provided between the second lens and the microlens array, and has a positive refractive power.
Abstract:
An integrator according to an embodiment includes first and second nodes, first to fifth switches, first and second main integration capacitors, and a first subsidiary integration capacitor. The first (second, third, fourth, fifth) switch has one end connected to a first (third, first, fourth, first) node and the other end connected to a third (second, fourth, second, fifth) node. The first main integration capacitor has one end connected to the third node and the other end connected to a standard voltage line. The second main integration capacitor has one end connected to the fourth node and the other end connected to the standard voltage line. The first subsidiary integration capacitor that has one end connected to the fifth node and the other end connected to the standard voltage line.
Abstract:
An imaging device includes a light source which irradiates an infrared light including one or more wavelength to a subject; a lens which forms an image of the infrared light transmitting the subject or being reflected from the subject; an infrared detection device including a plurality of pixels which are sensitive to the wavelength; and a filter array which is provided in proximity to the infrared detection device between the lens and the infrared detection device and including a plurality of wavelength filters having different transmission wavelengths.
Abstract:
A waveform shaping filter according to one embodiment includes a first resistor, a first transistor, a first capacitor, and a first amplifier. The first resistor includes one end to which a signal current is input and the other end. The first transistor includes a first terminal connected to the other end of the first resistor, a second terminal, and a control terminal. The first capacitor includes one end connected to the other end of the first resistor and the other end. The first amplifier includes an input terminal connected to the one end of the first resistor and an output terminal connected to the control terminal of the first transistor.
Abstract:
A solid-state imaging device according to an embodiment includes: an imaging element formed on a semiconductor substrate, and comprising an imaging region including a plurality of pixel blocks each including a plurality of pixels; a first optical system forming an image of an object on an imaging plane; and a second optical system comprising a microlens array including a plurality of microlenses each corresponding to one of the pixel blocks, and reducing and re-forming the image to be formed on the imaging plane on the pixel blocks corresponding to the respective microlenses. The imaging plane of the first optical system is located further away from the first optical system than the imaging element when the object is located at an infinite distance.
Abstract:
A solid-state imaging device according to an embodiment includes: an imaging element including an imaging area formed with a plurality of pixel blocks each including pixels; a first optical system forming an image of an object on an imaging surface; and a second optical system re-forming the image, which has been formed on the imaging surface, on the pixel blocks corresponding to microlenses, the second optical system including a microlens array formed with the microlenses provided in accordance with the pixel blocks. The microlenses are arranged in such a manner that an angle θ between a straight line connecting center points of adjacent microlenses and one of a row direction and a column direction in which the pixels are aligned is expressed as follows: θ>sin−1(2dp/Dml), where Dml represents microlens pitch, and dp represents pixel pitch.
Abstract:
According to an embodiment, a signal processing device includes an integrator, a setting unit, and an analog-to-digital converter. The integrator is configured to integrate an electrical charge corresponding to electromagnetic waves. The integrator includes a capacitor configured to store the electrical charge corresponding to the electromagnetic waves and a discharging circuit configured to discharge the capacitor. The setting unit is configured to set a period of integration of the electrical charge with respect to the integrator. The analog-to-digital converter includes a comparator configured to compare an integration output and a threshold value and a counter configured to output, as digital data of the electrical charge, the number of times for which a value of the integration output becomes not less than the threshold value. The converter is configured to discharge the capacitor during the period of integration by supplying a comparison output of the comparator to the discharging circuit.