摘要:
A method of synthesizing fused ring pyridines (annulated) by co-oligomerization of .alpha.,.omega.-diynes with about molar equivalents of nitriles using a Co.sup.+1 catalyst preferably cyclopentadienyl cobalt dicarbonyl. Additionally, new compounds of tricyclic quinolizine-4-ones were produced where excess cyanoacetic ester starting materials were utilized (about 2:1 equivalent nitriles:diyne). The results with the catalyst employed indicated a stepwise mechanism in which cobalt(I) catalyst first forms a metallocycle intermediate derived from the bisacetylene. This cobalt(III) intermediate reacts preferentially with nitriles to give the product annulated pyridines in good yield. Generally, preferred conditions indicated roughly molar equivalents of reactants with no substantial excess of either reactant for the bicyclic compounds. Preferred conditions include a moderate temperature (solvent reflux temperature) and a preferred solvent such as BTX-type solvent (xylene) or an alkane (N-octane) under an inert blanket (nitrogen) for a multi-day period.
摘要:
A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.
摘要:
Steroid compounds obtained by co-oligomerization of a side chain functionalized 1,5-hexadiyne with bis(trimethylsilyl)acetylene catalyzed by cyclopentadiene cobalt dicarbonyl, CpCO(CO).sub.2, via intermediate benzocyclobutene formation followed by intramolecular cycloaddition to the sterospecific formation of the steroid nucleus. This constitutes a short steroid synthesis, five steps from commercially available acyclic precursor 1,5-hexadiyne and three steps from 2-methyl-cyclopent-2-enone.
摘要:
A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.
摘要:
A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800° C. and more particularly 550-700° C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.