Abstract:
A microcontroller can interact with external ASICs using a multi-serial peripheral interface. The ASICs and the microcontroller can be included in an electrical device or an optical-electrical device. The microcontroller can implement the interface to access the registers of the different ASICs in bulk interactions, including a bulk status request, bulk configuration setting, and bulk data reads.
Abstract:
A microcontroller can interact with external ASICs using a multi-serial peripheral interface. The ASICs and the microcontroller can be included in an electrical device or an optical-electrical device. The microcontroller can implement the interface to access the registers of the different ASICs in bulk interactions, including a bulk status request, bulk configuration setting, and bulk data reads.
Abstract:
In some embodiments, an apparatus includes an optical detector that can sample asynchronously an optical signal from an optical component that can be either an optical transmitter or an optical receiver. In such embodiments, the apparatus also includes a processor operatively coupled to the optical detector, where the processor can calculate a metric value of the optical signal without an extinction ratio of the optical signal being measured. The metric value is proportional to the extinction ratio of the optical signal. In such embodiments, the processor can define an error signal based on the metric value of the optical signal and the processor can send the error signal to the optical transmitter such that the optical transmitter modifies an output optical signal.
Abstract:
An optical-electrical device can implement a feedback-based control loop for temperature of the device during component calibration. The optical-electrical device can implement compressed air to vary the device temperature during calibration. Additionally, non-active components of the device can be provided current to vary the temperature of the device in concert with the provided compressed air. Additional calibration temperatures can be implemented by activating and deactivating additional non-active components in the device, such as light sources, optical amplifiers, and modulators.
Abstract:
In some embodiments, an apparatus includes a first optical transceiver. The first optical transceiver includes a set of optical transmitters, an optical multiplexer operatively coupled to the set of optical transmitters, and a variable optical attenuator operatively coupled to the optical multiplexer. The variable optical attenuator is configured to receive a control signal from a controller of the first optical transceiver and modulate a signal representing control information with an output from the optical multiplexer. The control information is associated with the control signal and for a second optical transceiver operatively coupled to the first optical transceiver.
Abstract:
In some embodiments, an apparatus includes an automatic integrated circuit (IC) handler having a change kit. The change kit has a plunger moveably disposable onto an automatic test equipment (ATE). In such embodiments, the ATE is configured to receive an integrated circuit having an optical interface. The plunger has a first position and a second position. In such embodiments, the plunger is out of contact with the integrated circuit when the plunger is in the first position. The plunger includes an optical connector operatively coupled to the optical interface of the integrated circuit when the plunger is in the second position.
Abstract:
In some embodiments, an apparatus includes an automatic integrated circuit (IC) handler having a change kit. The change kit has a plunger moveably disposable onto an automatic test equipment (ATE). In such embodiments, the ATE is configured to receive an integrated circuit having an optical interface. The plunger has a first position and a second position. In such embodiments, the plunger is out of contact with the integrated circuit when the plunger is in the first position. The plunger includes an optical connector operatively coupled to the optical interface of the integrated circuit when the plunger is in the second position.
Abstract:
In some embodiments, a system includes a set of servers, a set of switches within a switch fabric, and an optical device. The optical device is operatively coupled to the set of servers via a first set of optical fibers. Each server from the set of servers is associated with at least one wavelength from a set of wavelengths upon connection to the optical device. The optical device is operatively coupled to each switch from a set of switches via an optical fiber from a second set of optical fibers. The optical device, when operative, wavelength demultiplexes optical signals received from each switch from the set of switches, and sends, for each wavelength from the set of wavelengths, optical signals for that wavelength to the server from the set of servers.
Abstract:
In some embodiments, an apparatus includes an optical transceiver that includes a first set of electrical transmitters operatively coupled to a switch. Each electrical transmitter from the first set of electrical transmitters is configured to transmit an electrical signal from a set of electrical signals. In such embodiments, the switch is configured to switch an electrical signal from the set of electrical signals such that the set of electrical signals are transmitted via a second set of electrical transmitters. Each electrical transmitter from the second set of electrical transmitters is operatively coupled to an optical transmitter from a set of optical transmitters. The set of optical transmitters is operatively coupled to an optical multiplexer. In such embodiments, at least one electrical transmitter from the second set of electrical transmitters is associated with a failure within the optical transceiver.
Abstract:
In some embodiments, an apparatus includes an automatic integrated circuit (IC) handler having a change kit. The change kit has a plunger moveably disposable onto an automatic test equipment (ATE). In such embodiments, the ATE is configured to receive an integrated circuit having an optical interface. The plunger has a first position and a second position. In such embodiments, the plunger is out of contact with the integrated circuit when the plunger is in the first position. The plunger includes an optical connector operatively coupled to the optical interface of the integrated circuit when the plunger is in the second position.