Abstract:
A method and composition for planarizing a substrate. The composition includes a pressure sensitive solution and one or more chemical agents for complexing with a metal or oxidized metal. The method for removal of a copper containing layer from a substrate surface, comprising applying a composition to a polishing media, the composition comprising a pressure sensitive solution, and one or more chemical agents for complexing with a metal or oxidized metal, and polishing the substrate surface with the polishing media.
Abstract:
Method and apparatus are provided for polishing substrates comprising conductive and low k dielectric materials with reduced or minimum substrate surface damage and delamination. In one aspect, a method is provided for processing a substrate including positioning a substrate having a conductive material formed thereon in a polishing apparatus having one or more rotational carrier heads and one or more rotatable platens, wherein the carrier head comprises a retaining ring and a membrane for securing a substrate and the platen has a polishing article disposed thereon, contacting the substrate surface and the polishing article to each other at a retaining ring contact pressure of about 0.4 psi or greater than a membrane pressure, and polishing the substrate to remove conductive material.
Abstract:
Method and apparatus are provided for polishing substrates comprising conductive and low k dielectric materials with reduced or minimum substrate surface damage and delamination. In one aspect, a method is provided for processing a substrate including positioning a substrate having a conductive material formed thereon in a polishing apparatus having one or more rotational carrier heads and one or more rotatable platens, wherein the carrier head comprises a retaining ring and a membrane for securing a substrate and the platen has a polishing article disposed thereon, contacting the substrate surface and the polishing article to each other at a retaining ring contact pressure of about 0.4 psi or greater than a membrane pressure, and polishing the substrate to remove conductive material.
Abstract:
Method and apparatus are provided for polishing conductive materials with low dishing of features and reduced or minimal remaining residues. In one aspect, a method is provided for processing a substrate by polishing the substrate to remove bulk conductive material and polishing the substrate by a ratio of carrier head rotational speed to platen rotational speed of between about 2:1 and about 3:1 to remove residual conductive material. In another aspect, a method is provided for processing a substrate including polishing the substrate at a first relative linear velocity between about 600 mm/second and about 1900 mm/second at the center of the substrate, and polishing the substrate at a second relative linear velocity between about 100 mm/second and about 550 mm/second at the center of the substrate.
Abstract:
Method and apparatus are provided for polishing conductive materials with low dishing of features and reduced or minimal remaining residues. In one aspect, a method is provided for processing a substrate by polishing the substrate to remove bulk conductive material and polishing the substrate by a ratio of carrier head rotational speed to platen rotational speed of between about 2:1 and about 3:1 to remove residual conductive material. In another aspect, a method is provided for processing a substrate including polishing the substrate at a first relative linear velocity between about 600 mm/second and about 1900 mm/second at the center of the substrate, and polishing the substrate at a second relative linear velocity between about 100 mm/second and about 550 mm/second at the center of the substrate.
Abstract:
Method and apparatus are provided for polishing substrates comprising conductive and low k dielectric materials with reduced or minimum substrate surface damage and delamination. In one aspect, a method is provided for processing a substrate including positioning a substrate having a conductive material formed thereon in a polishing apparatus having one or more rotational carrier heads and one or more rotatable platens, wherein the carrier head comprises a retaining ring and a membrane for securing a substrate and the platen has a polishing article disposed thereon, contacting the substrate surface and the polishing article to each other at a retaining ring contact pressure of about 0.4 psi or greater than a membrane pressure, and polishing the substrate to remove conductive material.
Abstract:
A method for manufacturing a manufacturing a magnetoresistive sensor that allows the sensor to be constructed with a very narrow and well controlled track width. The method includes depositing a layer of diamond like carbon over a series of sensor layers. A first mask is then formed to define a sensor, and an ion milling is performed to remove sensor material not protected by the first mask. Then, a second mask is formed, and a hard bias layer is deposited to the thickness of the sensor layers. The second mask is then lifted off and a CMP is performed to remove the first mask structure. Because all areas other than the area directly over the sensor are substantially planar a quick, gentle CMP can be used to remove the first mask layer even if the first mask is small, such as for definition of a very narrow track-width sensor.
Abstract:
A magnetic write head for data recording having a magnetic write pole with a stepped magnetic shell structure that defines a secondary flare point. The secondary flare point defined by the magnetic shell portion can be more tightly controlled with respect to its distance from the air bearing surface (ABS) of the write head than can a traditional flare point that is photolithographically on the main pole structure. This allows the effective flare point of the write head to be moved much closer to the ABS than would otherwise be possible using currently available tooling and photolithography techniques. The write head also includes a non-magnetic spacer layer formed over the magnetic shell structure and a trailing magnetic shield, a portion of which is formed over the non-magnetic spacer.
Abstract:
A method for self aligning a lapping guide with a structure of a write pole. A write pole is formed over a substrate and an electrically conductive material lapping guide material is deposited in a location that is removed from the write pole. A mask is then formed over a portion of the write pole and a portion of the electrically conductive material. A material removal process such as reactive ion etching can then be performed to remove a portion of the magnetic material that is not protected by the mask structure. An magnetic material is then electroplated over the write pole with the write pole, with the mask still in place. In this way, the electroplated material has an edge that is self aligned with an edge of the electrically conductive lapping guide material, both being defined by the same mask structure.
Abstract:
A method is provided for forming a plurality of regions of magnetic material in a substrate having a first approximately planar surface. The method comprises the steps of fabricating projections in the first surface of the substrate, depositing onto the first surface a magnetic material in such a way that the tops of the projections are covered with magnetic material, and depositing filler material atop the substrate so produced. The filler material may then be planarized, for example by chemical-mechanical polishing. In an alternative embodiment magnetic material is deposited on a substrate and portions of it are removed, leaving islands of material. Filler material is then deposited, which may be planarized.