摘要:
An electrophoretic particle includes ionic liquid stored in a spherical polymer shell and a charged layer formed on an inner surface of the shell, and a display device includes the electrophoretic particle. The shell is not charged, and the charged layer in the shell is charged. Therefore, particles having different polarities from each other do not stick to each other. Since the electrophoretic particles are dispersed in air, a high response speed can be achieved, a large amount of charges can be formed by the ionic liquid and the charged layer contacting the ionic liquid, and thus, the particles can move with a low driving voltage.
摘要:
Provided is an electrophoretic display device. The electrophoretic display device includes a first substrate and a second substrate forming a space receiving electrophoretic particles, and a first electrode and a second electrode formed on the first substrate and the second substrate respectively. The electrophoretic particles include reflective particles having a first electric polarity and reflecting a first light in visible wavelength bands, and light emission particles having a second electric polarity and emitting a second light by an optical stimulation. The first and second lights are in a substantially same color range of wavelength in a same pixel region.
摘要:
Electrophoretic particles and dielectrophoretic particles are included together in a unit pixel. Each of the electrophoretic particles and the dielectrophoretic particles includes two kinds of particles having different electric properties. The electrophoretic particles include positively charged particles and negatively charged particles. The dielectrophoretic particles include particles having low dielectric constant and particles having high dielectric constant. A first electric field for moving the electrophoretic particles and a second electric field for moving the dielectrophoretic particles are applied to the unit pixel. The second electric field has an asymmetric gradient in the direction where the dielectrophoretic particles move to determine movement directions of the dielectrophoretic particles having different dielectric constants.
摘要:
A surface plasmon display device includes metal particles having a constant size within all of the pixel regions between a first electrode and a second electrode and a dielectric layer corresponding to each of the pixel regions formed on an inner surface of a first substrate, wherein the dielectric layer in each of the pixel regions has physical properties for causing the surface plasmon resonance corresponding to a wavelength designated to the corresponding pixel region.
摘要:
Provided is an electrophoretic display device. The electrophoretic display device includes a first substrate and a second substrate forming a space receiving electrophoretic particles, and a first electrode and a second electrode formed on the first substrate and the second substrate respectively. The electrophoretic particles include reflective particles having a first electric polarity and reflecting a first light in visible wavelength bands, and light emission particles having a second electric polarity and emitting a second light by an optical stimulation. The first and second lights are in a substantially same color range of wavelength in a same pixel region.
摘要:
A method of fabricating a thick gallium nitride (GaN) layer includes forming a porous GaN layer having a thickness of 10-1000 nm by etching a GaN substrate in a reaction chamber in an HCI and NH3 gas atmosphere and forming an in-situ GaN growth layer in the reaction chamber. The method of forming the porous GaN layer and the thick GaN layer in-situ proceeds in a single chamber. The method is very simplified compared to the prior art. In this way, the entire process is performed in one chamber, and in particular, GaN etching and growth are performed using an HVPE process gas such that costs are greatly reduced.
摘要:
A method of fabricating a thick GaN layer includes forming a porous GaN layer having a thickness of 10-1000 nm by etching a GaN substrate in a reaction chamber in an HCl and NH3 gas atmosphere and forming an in-situ GaN growth layer in the reaction chamber. The method of forming the porous GaN layer and the thick GaN layer in-situ proceeds in a single chamber. The method is very simplified compared to the prior art. In this way, the entire process is performed in one chamber, and in particular, GaN etching and growth are performed using an HVPE process gas such that costs are greatly reduced.
摘要:
An apparatus for fabricating a GaN single crystal and a fabrication method for producing GaN single crystal ingot are provided. The apparatus includes: a reactor including a ceiling, a floor and a wall with a predetermined height encompassing an internal space between the ceiling and the floor, wherein the ceiling is opposite to the floor; a quartz vessel on the floor containing Ga metal; a mount installed on the ceiling on which a GaN substrate is mounted, the GaN substrate being opposite to the quartz vessel; a first gas supplying unit supplying the quartz vessel with hydrogen chloride (HCl) gas; a second gas supplying unit supplying the internal space of the reactor with ammonia (NH3) gas; and a heating unit installed in conjunction with the wall of the reactor for heating the internal space, wherein the lower portion of the internal space is heated to a higher temperature than the upper portion.
摘要:
An apparatus for fabricating a GaN single crystal and a fabrication method for producing GaN single crystal ingot are provided. The apparatus includes: a reactor including a ceiling, a floor and a wall with a predetermined height encompassing an internal space between the ceiling and the floor, wherein the ceiling is opposite to the floor; a quartz vessel on the floor containing Ga metal; a mount installed on the ceiling on which a GaN substrate is mounted, the GaN substrate being opposite to the quartz vessel; a first gas supplying unit supplying the quartz vessel with hydrogen chloride (HCl) gas; a second gas supplying unit supplying the internal space of the reactor with ammonia (NH3) gas; and a heating unit installed in conjunction with the wall of the reactor for heating the internal space, wherein the lower portion of the internal space is heated to a higher temperature than the upper portion.
摘要:
A method of fabricating a freestanding gallium nitride (GaN) substrate includes: preparing a GaN substrate within a reactor; supplying HCl and NH3 gases into the reactor to treat the surface of the GaN substrate and forming a porous GaN layer; forming a GaN crystal growth layer on the porous GaN layer; and cooling the GaN substrate on which the GaN crystal growth layer has been formed and separating the GaN crystal growth layer from the substrate. According to the fabrication method, the entire process including forming a porous GaN layer and a thick GaN layer is performed in-situ within a single reactor. The method is significantly simplified compared to a conventional fabrication method. The fabrication method enables the entire process to be performed in one chamber while allowing GaN surface treatment and growth to be performed using HVPE process gases, thus resulting in a significant reduction in manufacturing costs. The fabrication method also allows self-separation of thick GaN without cracking, thus achieving a short process time and a high manufacturing yield.