Abstract:
Methods, systems, and apparatus for quantifying the quality of a fiducial time marker for a candidate heart beat, quantifying the quality of a candidate heart beat, or determining a time of beat sequence of the patient's heart. A fiducial time marker is obtained for a candidate heart beat. A quality index of said candidate heart beat is set to a first value. The candidate heart beat is tested with at least one beat validity test. At least a second value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least one beat validity test. The candidate heart beat is tested with at least a second heart beat validity test. At least a third value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least second heart beat validity test. In one class of beat validity test, a constraint defining a pass is modified at one or more times after the most recent prior valid heart beat that is greater than a constraint modification time threshold
Abstract:
A system (10) analyzes signals representative of a subject's brain activity in a signal processor (12) for information indicating the subject's current activity state and for predicting a change in the activity state. One preferred embodiment uses a combination of nonlinear filtering methods to perform real-time analysis of the electro-encephalogram (EEG) or electro-corticogram (ECoG) signals from a subject patient for information indicative of or predictive of a seizure, and to complete the needed analysis at least before clinical seizure onset. The preferred system then performs an output task for prevention or abatement of the seizure, or for recording pertinent data.
Abstract:
Apparatus and method detect a detection cluster that is associated with a neurological event, such as a seizure, of a nervous system disorder and update therapy parameters that are associated with a treatment therapy. The occurrence of the detection cluster is detected when the maximal ratio exceeds an intensity threshold. If the maximal ratio drops below the intensity threshold for a time interval that is less than a time threshold and subsequently rises above the intensity threshold, the subsequent time duration is considered as being associated with the detection cluster rather than being associated with a different detection cluster. Consequently, treatment of the nervous system disorder during the corresponding time period is in accordance with one detection cluster. Treatment therapy may be provided by providing electrical stimulation, drug infusion or a combination. Therapy parameters may be updated for each mth successive group of applications of the treatment therapy or for each nth detection cluster.
Abstract:
Method and apparatus for detecting possible interference in a neurological signal received from a monitoring element of a medical device system. The monitoring element monitors a condition or a symptom of a nervous system disorder being treated and provides a neurological signal to the medical device system for purposes of providing closed-loop feedback control. The system analyzes various parameters of the received signal by taking instantaneous measurements of data points in moving window and thereby determining whether the signal is of poor quality. If the signal is of determined poor quality, it is removed from consideration in the closed-loop feedback control system until it is determined that the signal quality has sufficiently been restored.
Abstract:
A method and system for intrinsic timescale decomposition, filtering, and automated analysis of signals of arbitrary origin or timescale including receiving an input signal, determining a baseline segment and a monotonic residual segment with strictly negative minimum and strictly positive maximum between two successive extrema of the input signal, and producing a baseline output signal and a residual output signal. The method and system also includes determining at least one instantaneous frequency estimate from a proper rotation signal, determining a zero-crossing and a local extremum of the proper rotation signal, and applying interpolation thereto to determine an instantaneous frequency estimate thereof. The method and system further includes determining at least one instantaneous frequency estimate from a proper rotation signal, extracting an amplitude-normalized half wave therefrom and applying an arcsine function to the amplitude-normalized half wave to determine an instantaneous frequency estimate of the proper rotation signal.
Abstract:
A system (10) analyzes signals representative of a subject's brain activity in a signal processor (12) for information indicating the subject's current activity state and for predicting a change in the activity state. One preferred embodiment uses a combination of nonlinear filtering methods to perform real-time analysis of the electro-encephalogram (EEG) or electro-corticogram (ECoG) signals from a subject patient for information indicative of or predictive of a seizure, and to complete the needed analysis at least before clinical seizure onset. The preferred system then performs an output task for prevention or abatement of the seizure, or for recording pertinent data.
Abstract:
Methods, systems, and apparatus for detecting and/or validating a detection of a state change by matching the shape of one or more of an cardiac data series, a heart rate variability data series, or at least a portion of a heart beat complex, derived from cardiac data, to an appropriate template.
Abstract:
Methods, systems, and apparatus for detecting and/or validating a detection of a state change by matching the shape of one or more of an cardiac data series, a heart rate variability data series, or at least a portion of a heart beat complex, derived from cardiac data, to an appropriate template.
Abstract:
Methods, systems, and apparatus for quantifying the quality of a fiducial time marker for a candidate heart beat, quantifying the quality of a candidate heart beat, or determining a time of beat sequence of the patient's heart. A fiducial time marker is obtained for a candidate heart beat. A quality index of said candidate heart beat is set to a first value. The candidate heart beat is tested with at least one beat validity test. At least a second value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least one beat validity test. The candidate heart beat is tested with at least a second heart beat validity test. At least a third value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least second heart beat validity test. In one class of beat validity test, a constraint defining a pass is modified at one or more times after the most recent prior valid heart beat that is greater than a constraint modification time threshold
Abstract:
An implantable interface system for a medical device system providing selective interconnectivity between conduits and therapy elements. The interface system contains connecting elements that each provide a robust connection between a selected conduit and a selected therapy element. The interface system enables the use of a surplus of therapy elements so that treatment to the same site (in the case of electrode migration or failure), or to different sites but within the spatial domain of the interface's elements may be delivered through the spare/excess therapy elements without the need for additional major surgical procedures.