Abstract:
Methods, systems, and apparatus for detecting the seizure in a patient using a medical device. The determination is performed by collecting cardiac data; determining valid heart beats suitable for seizure detection from the cardiac data; calculating heart rate data of interest from the valid heart beats; and identifying a seizure event from the heart rate data. The medical device may then take a responsive action, such as warning, logging the time of the seizure, computing and storing one or more seizure severity indices, and/or treating the seizure.
Abstract:
Methods, systems, and apparatus for detecting the seizure in a patient using a medical device. The determination is performed by collecting cardiac data; determining valid heart beats suitable for seizure detection from the cardiac data; calculating heart rate data of interest from the valid heart beats; and identifying a seizure event from the heart rate data. The medical device may then take a responsive action, such as warning, logging the time of the seizure, computing and storing one or more seizure severity indices, and/or treating the seizure.
Abstract:
Disclosed are probabilistic approaches to patient evaluation, warning and treatment of a neurological disorder. Disclosed techniques estimate probability distribution functions or cumulative distribution functions, determined by relying on representative historical profiles, comprising information in short and/or long timescales obtained at times that may be intermittent or temporally discontinuous from each other or from other events of interest. The patient may thereby be treated based on the determined probability information.
Abstract:
A cerebral interface system including a housing mechanism spaced at least partially in a cavity formed in the subject's skull; an attaching mechanism; a fluid-tight sealing mechanism; a control mechanism; a communication mechanism with one or more sensors embedded in the subject's brain connecting the control mechanism to the subject's brain; a power source; an inner wall substantially aligned with an inner surface of the subject's skull; an outer wall which may include an auxiliary portion extending tangentially outwardly from the cavity formed in the subject's skull; a communication link connecting the control mechanism to external apparatus for transmitting or receiving information related to detecting, predicting, controlling, or aborting abnormal brain activity of the subject; and an output mechanism which is activatable by the control mechanism.
Abstract:
A method, computer program, and system for real-time signal analysis providing characterization of temporally-evolving densities and distributions of signal features of arbitrary-type signals in a moving time window by tracking output of order statistic filters (also known as percentile, quantile, or rank-order filters). Given a raw input signal of arbitrary type, origin, or scale, the present invention enables automated quantification and detection of changes in the distribution of any set of quantifiable features of that signal as they occur in time. Furthermore, the present invention's ability to rapidly and accurately detect changes in certain features of an input signal can also enable prediction in cases where the detected changes associated with an increased likelihood of future signal changes.
Abstract:
A method, computer program, and system for real-time signal analysis providing characterization of temporally-evolving densities and distributions of signal features of arbitrary-type signals in a moving time window by tracking output of order statistic filters (also known as percentile, quantile, or rank-order filters). Given a raw input signal of arbitrary type, origin, or scale, the present invention enables automated quantification and detection of changes in the distribution of any set of quantifiable features of that signal as they occur in time. Furthermore, the present invention's ability to rapidly and accurately detect changes in certain features of an input signal can also enable prediction in cases where the detected changes associated with an increased likelihood of future signal changes.
Abstract:
A system and method for analyzing and logging changes in brain state of a subject for administering therapy to the subject based on the at least one cardiac signal wherein the system and method comprises the steps of receiving at least one cardiac signal of the subject into a processor, analyzing the cardiac signal to detect at least one cardiac signal change indicative of a brain state change, and logging at least one characteristic of the detected signal change or brain state change.
Abstract:
Methods, systems, and apparatus for detecting and/or validating a detection of a state change by matching the shape of one or more of an cardiac data series, a heart rate variability data series, or at least a portion of a heart beat complex, derived from cardiac data, to an appropriate template.
Abstract:
Methods, systems, and apparatus for detecting and/or validating a detection of a state change by matching the shape of one or more of an cardiac data series, a heart rate variability data series, or at least a portion of a heart beat complex, derived from cardiac data, to an appropriate template.
Abstract:
Methods, systems, and apparatus for detecting and/or validating a detection of a state change by matching the shape of one or more of an cardiac data series, a heart rate variability data series, or at least a portion of a heart beat complex, derived from cardiac data, to an appropriate template.