Abstract:
A method of controlling the forming voltage of a dielectric film in a resistive random access memory (ReRAM) device. The method includes depositing a dielectric film contains intrinsic defects on a substrate, forming a plasma-excited treatment gas containing H2 gas, and exposing the dielectric film to the plasma-excited treatment gas to create additional defects in the dielectric film without substantially changing a physical thickness of the dielectric film, where the additional defects lower the forming voltage needed for generating an electrically conducting filament across the dielectric film. The dielectric film can include a metal oxide film and the plasma-excited treatment gas may be formed using a microwave plasma source.
Abstract:
An approach to providing a method of forming a dopant junction in a semiconductor device. The approach includes performing a surface modification treatment on an exposed surface of a semiconductor layer and depositing a dopant material on the exposed surface of the semiconductor layer. Furthermore, the approach includes alloying a metal layer with a dopant layer to form a semiconductor device junction where the semiconductor layer is composed of a Group III-V semiconductor material, the surface modification treatment occurs in a vacuum chamber to remove surface oxides from the exposed surface of the semiconductor layer, and each of the above processes occur at a low temperature.
Abstract:
A method of controlling the forming voltage of a dielectric film in a resistive random access memory (ReRAM) device. The method includes depositing a dielectric film contains intrinsic defects on a substrate, forming a plasma-excited treatment gas containing H2 gas, and exposing the dielectric film to the plasma-excited treatment gas to create additional defects in the dielectric film without substantially changing a physical thickness of the dielectric film, where the additional defects lower the forming voltage needed for generating an electrically conducting filament across the dielectric film. The dielectric film can include a metal oxide film and the plasma-excited treatment gas may be formed using a microwave plasma source.
Abstract:
Embodiments are directed to a method of forming a semiconductor device and resulting structures having a shallow, abrupt and highly activated tin (Sn) extension implant junction. The method includes forming a semiconductor fin on a substrate. A gate is formed over a channel region of the semiconductor fin. A Sn extension implant junction is formed on a surface of the semiconductor fin in the channel region.
Abstract:
A method for fabricating a photovoltaic device includes forming a polycrystalline absorber layer including Cu—Zn—Sn—S(Se) (CZTSSe) over a substrate. The absorber layer is rapid thermal annealed in a sealed chamber having elemental sulfur within the chamber. A sulfur content profile is graded in the absorber layer in accordance with a size of the elemental sulfur and an anneal temperature to provide a graduated bandgap profile for the absorber layer. Additional layers are formed on the absorber layer to complete the photovoltaic device.
Abstract:
A method for fabricating a photovoltaic device includes forming a polycrystalline absorber layer including Cu—Zn—Sn—S(Se) (CZTSSe) over a substrate. The absorber layer is rapid thermal annealed in a sealed chamber having elemental sulfur within the chamber. A sulfur content profile is graded in the absorber layer in accordance with a size of the elemental sulfur and an anneal temperature to provide a graduated bandgap profile for the absorber layer. Additional layers are formed on the absorber layer to complete the photovoltaic device.
Abstract:
An approach to providing a method of forming a dopant junction in a semiconductor device. The approach includes performing a surface modification treatment on an exposed surface of a semiconductor layer and depositing a dopant material on the exposed surface of the semiconductor layer. Additionally, the approach includes performing a low temperature anneal in an oxygen free environment followed by depositing a metal layer on the dopant layer. Furthermore, the approach includes alloying the metal layer with the dopant layer to form a semiconductor device junction where the semiconductor layer is composed of a Group III-V semiconductor material, the surface modification treatment occurs in a vacuum chamber to remove surface oxides from the exposed surface of the semiconductor layer, and each of the above processes occur at a low temperature.