Abstract:
A visualization device for a flow field includes a chamber, a power supply, at least one pair of electrodes, and at least one flow field observation module. The flow field observation module includes a high-speed camera, a light detecting component, and a light filter component. The power supply outputs a voltage to generate a plasma, and the pair of electrodes is disposed in the chamber. The flow field observation module is disposed outside the chamber and captures an image of a fluid particle excited by the plasma toward the chamber. The light filter component is disposed between the high-speed camera and the chamber. The light detecting component obtains a light information within the chamber and sends the light information to the light filter component.
Abstract:
An evaporation method in this disclosure is adapted for performing an evaporation process upon a surface of an evaporation target substrate. In an embodiment, an evaporation source plate is arranged to be heated by a heater so as to evaporate an evaporation material to its gaseous state, and then enable the gaseous evaporation material to travel passing through holes of a shutter device and thus spread toward the surface of the evaporation target substrate for depositing a film. Moreover, the evaporation method uses a transmission device for controlling the opening/closing of the holes, and there is a heating area formed at a position between the shutter device and the evaporation source plate for allowing the evaporation source plate, the plural holes, the heating area, the evaporation material and the heater to be arranged parallel to one another from the top to bottom.
Abstract:
A resistive random access memory and a method for fabricating the same are provided. The method includes forming a bottom electrode on a substrate; forming a metal oxide layer on the bottom electrode; forming an oxygen atom gettering layer on the metal oxide layer; forming a first top electrode sub-layer on the oxygen atom gettering layer; forming a second top electrode sub-layer on the first top electrode sub-layer, wherein the first top electrode sub-layer and the second top electrode sub-layer comprise a top electrode; and subjecting the metal oxide layer and the oxygen atom gettering layer to a thermal treatment, driving the oxygen atoms of the metal oxide layer to migrate into and react with the oxygen atom gettering layer, resulting in a plurality of oxygen vacancies within the metal oxide layer.
Abstract:
An optimization method for a vacuum plating process includes following steps. A property of a thin film to be optimized is determined. According to the property of the thin film to be optimized, process parameters and a level of each of the process parameters are determined. M sets of experiments are designed, where M is a positive integer, M is positively related to a number of the process parameters, but M is not related to a number of the level of the process parameters. The M sets of experiments are performed to obtain M sets of test films and the property of each of the test films are measured or calculated. Process parameters used in the M sets of experiments and the property of the M sets of test films are fitted with a multi-dimensional quadratic transformation function to obtain a first fitting function. The first fitting function is dynamically modified using an iteration method to obtain a best fitting function. A multi-dimensional response surface diagram is illustrated using the best fitting function to determine an optimal process parameter combination.
Abstract:
A resistive random access memory and a method for fabricating the same are provided. The method includes forming a bottom electrode on a substrate; forming a metal oxide layer on the bottom electrode; forming an oxygen atom gettering layer on the metal oxide layer; forming a first top electrode sub-layer on the oxygen atom gettering layer; forming a second top electrode sub-layer on the first top electrode sub-layer, wherein the first top electrode sub-layer and the second top electrode sub-layer comprise a top electrode; and subjecting the metal oxide layer and the oxygen atom gettering layer to a thermal treatment, driving the oxygen atoms of the metal oxide layer to migrate into and react with the oxygen atom gettering layer, resulting in a plurality of oxygen vacancies within the metal oxide layer.
Abstract:
A deposition apparatus including a chamber having a deposition area and a non-deposition area, a gas intake device communicated with the chamber, a gas annulus disposed in the chamber and surrounding the gas intake device, a carrier disposed in the deposition area and a retaining annulus disposed in chamber and surrounding the carrier. The gas intake device is disposed corresponding to the deposition area and configured to draw a process gas into the deposition area. The gas annulus is configured to generate an annular gas curtain in the deposition area. The carrier carries a deposited object, wherein the gas annulus is located between the gas intake device and the carrier. The deposited object is surrounded by the annular gas curtain. The retaining annulus has a plurality of through holes. The retaining annulus is located between the gas annulus and the carrier.
Abstract:
A visualization device for a flow field includes a chamber, a power supply, at least one pair of electrodes, and at least one flow field observation module. The flow field observation module includes a high-speed camera, a light detecting component, and a light filter component. The power supply outputs a voltage to generate a plasma, and the pair of electrodes is disposed in the chamber. The flow field observation module is disposed outside the chamber and captures an image of a fluid particle excited by the plasma toward the chamber. The light filter component is disposed between the high-speed camera and the chamber. The light detecting component obtains a light information within the chamber and sends the light information to the light filter component.
Abstract:
The disclosure is an evaporation apparatus and a method of evaporation using the same. The evaporation apparatus includes an evaporation chamber, an evaporation source, a carrying device, and a fluid disturbance device. The evaporation chamber has an evaporation space, the evaporation source is disposed at a lower part in the evaporation space, and the evaporation source is suitable for accommodating an evaporation source material. The carrying device is disposed to be rotatable about a reference axis as the center at an upper part in the evaporation space and is opposite to the evaporation source; the carrying device is suitable for carrying a substrate and positions the substrate between the evaporation source and the carrying device. The fluid disturbance device is suitable for injecting a disturbed fluid towards the carrying device in the evaporation space.
Abstract:
An evaporation method in this disclosure is adapted for performing an evaporation process upon a surface of an evaporation target substrate. In an embodiment, an evaporation source plate is arranged to be heated by a heater so as to evaporate an evaporation material to its gaseous state, and then enable the gaseous evaporation material to travel passing through holes of a shutter device and thus spread toward the surface of the evaporation target substrate for depositing a film. Moreover, the evaporation method uses a transmission device for controlling the opening/closing of the holes, and there is a heating area formed at a position between the shutter device and the evaporation source plate for allowing the evaporation source plate, the plural holes, the heating area, the evaporation material and the heater to be arranged parallel to one another from the top to bottom.
Abstract:
An atomic layer deposition apparatus including a chamber, a platform, a shower head, a bias power supply, a first injection device, and a second injection device is provided. The platform and the shower head are disposed in the chamber, and the platform is configured to carry a substrate having a high aspect ratio structure. The bias power supply is coupled to the platform. The first injection device and the second injection device are connected to the chamber; the first injection device injects a first precursor or a first inert gas into the chamber along a first direction through the shower head, and the second injection device injects a second precursor or a second inert gas into the chamber along a second direction perpendicular to the first direction. When the first precursor or the second precursor is injected into the chamber, the bias power supply is turned on. When the first inert gas or the second inert gas is injected into the chamber, the bias power supply is turned off.