摘要:
A bi-layer seed layer can exhibit good seed property for an infrared reflective layer, together with improved thermal stability. The bi-layer seed layer can include a thin zinc oxide layer having a desired crystallographic orientation for a silver infrared reflective layer disposed on a bottom layer having a desired thermal stability. The thermal stable layer can include aluminum, magnesium, or bismuth doped tin oxide (AlSnO, MgSnO, or BiSnO), which can have better thermal stability than zinc oxide but poorer lattice matching for serving as a seed layer template for silver (111).
摘要:
A bi-layer seed layer can exhibit good seed property for an infrared reflective layer, together with improved thermal stability. The bi-layer seed layer can include a thin zinc oxide layer having a desired crystallographic orientation for a silver infrared reflective layer disposed on a bottom layer having a desired thermal stability. The thermal stable layer can include aluminum, magnesium, or bismuth doped tin oxide (AlSnO, MgSnO, or BiSnO), which can have better thermal stability than zinc oxide but poorer lattice matching for serving as a seed layer template for silver (111).
摘要:
Two layer silver process comprising a silver layer deposited on a doped silver layer can improve the adhesion of the silver layer on a substrate, minimizing agglomeration to provide a high quality silver layer. The doped silver layer can comprise silver and a doping element that has lower enthalpy of formation with oxide than that of silver, leading to better bonding with oxygen in the substrate.
摘要:
Low emissivity coated panels can be fabricated using a base layer having a low refractive index layer on a high refractive index layer. The low refractive index layer can have refractive index less than 1.5, and can include MgF2, CaF2, SiO2, or BO. The high refractive index layer can have refractive index greater than 2.3, and can include TiOx, NbOx, or BiOx. The multilayer base structure can allow color tuning with enhanced transmission, for example, as compared to similar structures having single layer base layer.
摘要:
Disclosed herein are systems, methods, and apparatus for forming a low emissivity panel. In various embodiments, a partially fabricated panel may be provided. The partially fabricated panel may include a substrate, a reflective layer formed over the substrate, and a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the substrate and the top dielectric layer. The top dielectric layer may include tin having an oxidation state of +4. An interface layer may be formed over the top dielectric layer. A top diffusion layer may be formed over the interface layer. The top diffusion layer may be formed in a nitrogen plasma environment. The interface layer may substantially prevent nitrogen from the nitrogen plasma environment from reaching the top dielectric layer and changing the oxidation state of tin included in the top dielectric layer.
摘要:
Provided is High Productivity Combinatorial (HPC) testing methodology of semiconductor substrates, each including multiple site isolated regions. The site isolated regions are used for testing different compositions and/or structures of barrier layers disposed over silver reflectors. The tested barrier layers may include all or at least two of nickel, chromium, titanium, and aluminum. In some embodiments, the barrier layers include oxygen. This combination allows using relative thin barrier layers (e.g., 5-30 Angstroms thick) that have high transparency yet provide sufficient protection to the silver reflector. The amount of nickel in a barrier layer may be 5-10% by weight, chromium—25-30%, titanium and aluminum—30%-35% each. The barrier layer may be co-sputtered in a reactive or inert-environment using one or more targets that include all four metals. An article may include multiple silver reflectors, each having its own barrier layer.
摘要:
Embodiments provided herein describe electrochromic devices and methods for forming electrochromic devices. The electrochromic devices include a transparent substrate, a transparent conducting oxide layer coupled to the transparent substrate, and a layer of electrochromic material coupled to the transparent conducting oxide layer. The transparent conducting oxide layer includes indium and zinc.
摘要:
A bi-layer seed layer can exhibit good seed property for an infrared reflective layer, together with improved thermal stability. The bi-layer seed layer can include a thin zinc oxide layer having a desired crystallographic orientation for a silver infrared reflective layer disposed on a bottom layer having a desired thermal stability. The thermal stable layer can include aluminum, magnesium, or bismuth doped tin oxide (AlSnO, MgSnO, or BiSnO), which can have better thermal stability than zinc oxide but poorer lattice matching for serving as a seed layer template for silver (111).
摘要:
A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include a ternary alloy of titanium, nickel and niobium, which showed improvements in overall performance than those from binary barrier results. The percentage of titanium can be between 5 and 15 wt %. The percentage of nickel can be between 30 and 50 wt %. The percentage of niobium can be between 40 and 60 wt %.
摘要:
A bi-layer seed layer can exhibit good seed property for an infrared reflective layer, together with improved thermal stability. The bi-layer seed layer can include a thin zinc oxide layer having a desired crystallographic orientation for a silver infrared reflective layer disposed on a bottom layer having a desired thermal stability. The thermal stable layer can include aluminum, magnesium, or bismuth doped tin oxide (AlSnO, MgSnO, or BiSnO), which can have better thermal stability than zinc oxide but poorer lattice matching for serving as a seed layer template for silver (111).