Abstract:
A user equipment (UE) is configured to perform cell selection and camp on a first cell in a first frequency resource. The UE is configured to determine that proximity services are supported in a second frequency resource. The first and second wireless frequency resources are within licensed spectrums corresponding to one or more mobile communications networks. The UE is configured to start device-to-device communication on the second frequency resource and send, with the transceiver, a device-to-device message in the second frequency resource. The device-to-device message includes one of a device-to-device discovery message and a device-to-device communication message.
Abstract:
Technology for a relay user equipment (UE) operable to act as a relay between a remote UE and an eNodeB is disclosed. The relay UE can receive, from the eNodeB, a relay configuration message that includes one or more relay configuration parameters. The relay UE can identify relay UE information associated with one or more relay parameters of the relay UE. The relay UE can determine to act as the relay for the remote UE based on the one or more relay configuration parameters and the relay UE information. The relay UE can transmit a discovery message to the remote UE in order to establish a direct connection between the relay UE and the remote UE, wherein the relay UE is configured to relay data from the eNodeB to the remote UE via the direct convection between the relay UE and the remote UE.
Abstract:
A thermal finite-state-automaton includes system states and transitions between the system states. The system states may be based on a combination of network parameters for communicating through the wireless communication system and UE processing parameters. A default state is for operation of the UE at a sustainable performance configuration level for the network parameters and the UE processing parameters to maintain a UE temperature below a first temperature threshold. A high state is for operation of the UE during up to a maximum time duration at a peak performance configuration level for the network parameters and the UE processing parameters. A recovery state is for operation of the UE during at least a minimum time duration at a reduced performance configuration level for the network parameters and the UE processing parameters. An emergency shutdown state is triggerable by the UE temperature exceeding a second temperature threshold.
Abstract:
A hybrid automatic repeat request (HARQ) process enables a retransmission to be sent on a carrier (or medium, set of frequencies, band, etc.) different from the carrier on which the previous transmissions (initial transmission and/or retransmissions) were sent. An enhanced HARQ process can improve system performance by aiding user throughput, system throughput, and delay performance by making retransmissions possible even when the unlicensed band is not available (e.g., when occupied by other RATs or the same RAT deployed by another operator). For example, a transmitter sends a subpacket in an unlicensed band. The receiver feeds back a NACK to the transmitter due to the packet decoding failure. If the medium is not idle, the transmitter sends the retransmission in another band or another channel that can be either a licensed band/channel or another unlicensed band/channel. The retransmission can be sent in multiple licensed and/or unlicensed bands/channels at the same time.
Abstract:
User equipment (UE) handover (HO) techniques for reducing or eliminating interruption time during an HO process are described. In one embodiment, for example, an apparatus may include at least one memory and logic for an evolved node B (eNB), at least a portion of the logic comprised in hardware coupled to the at least one memory. The logic may be operative to forward downlink (DL) data received from a serving gateway (SGW) to user equipment (UE), transmit a handover command to the UE to trigger execution of a handover (HO) process to handover the UE to a target eNB, continue forwarding at least a portion of the DL data to the UE following transmission of the handover command, and terminate transmission of the DL data to the UE responsive to detecting a stop DL data event. Other embodiments are described and claimed.
Abstract:
Adaptive paging techniques for EC-capable devices are described. In one embodiment, for example, an apparatus may comprise at least one memory and logic for an evolved node B (eNB), at least a portion of the logic comprised in hardware coupled to the at least one memory, the logic to receive an S1 paging message comprising a user equipment (UE) identifier (ID) associated with a UE and an extended coverage (EC) capability indicator indicating that the UE is EC-capable and page the UE using an EC paging sequence based on receipt of the S1 paging message, the EC paging sequence to comprise a series of transmissions of a radio resource control (RRC) paging message, the logic to truncate the EC paging sequence based on a determination that the UE has responded to RRC paging. Other embodiments are described and claimed.