Abstract:
A three-dimensional (3D) video codec encodes multiple views of a 3D video, each including texture and depth components. The encoders of the codec encode video blocks of their respective views based on a set of prediction parameters, such as quad-tree split flags, prediction modes, partition sizes, motion fields, inter directions, reference indices, luma intra modes, and chroma intra modes. The prediction parameters may be inherited across different views and different ones of the texture and depth components.
Abstract:
An example apparatus for enhancing video includes a decoder to decode a received 360-degree projection format video bitstream to generate a decoded 360-degree projection format video. The apparatus also includes a viewport generator to generate a viewport from the decoded 360-degree projection format video. The apparatus further includes a convolutional neural network (CNN)-based filter to remove an artifact from the viewport to generate an enhanced image. The apparatus further includes a displayer to send the enhanced image to a display.
Abstract:
Systems, apparatus, articles of manufacture and methods for face augmentation in video are disclosed. An example apparatus includes executable code to detect a face of a subject in the video, detect a gender of the subject based on the face, detect a skin tone of the subject based on the face, apply a first process to smooth skin on the face in the video, apply a second process to change the skin tone of the face, apply a third process to slim the face, apply a fourth process to adjust a size of eyes on the face, and apply a fifth process to remove an eye bag from the face. One or more of the first process, the second process, the third process, the fourth process, or the fifth process adjustable based on one or more of the gender or an age. The example apparatus also includes one or more processors to generate modified video with beauty effects, the beauty effects based on one or more of the first process, the second process, the third process, the fourth process, or the fifth process.
Abstract:
Systems, devices and methods are described including performing scalable video coding using inter-layer residual prediction. Inter-layer residual prediction in an enhancement layer coding unit, prediction unit, or transform unit may use residual data obtained from a base layer or from a lower enhancement layer. The residual may be subjected to upsample filtering and/or refinement filtering. The upsample or refinement filter coefficients may be predetermined or may be adoptively determined.
Abstract:
A three-dimensional (3D) video codec encodes multiple views of a 3D video, each including texture and depth components. The encoders of the codec encode video blocks of their respective views based on a set of prediction parameters, such as quad-tree split flags, prediction modes, partition sizes, motion fields, inter directions, reference indices, luma intra modes, and chroma intra modes. The prediction parameters may be inherited across different views and different ones of the texture and depth components.
Abstract:
Systems, devices and methods are described including performing scalable video coding using inter-layer pixel sample prediction. Inter-layer pixel sample prediction in an enhancement layer coding unit, prediction unit, or transform unit may use reconstructed pixel samples obtained from a base layer or from a lower enhancement layer. The pixel samples may be subjected to upsample filtering and/or refinement filtering. The upsample or refinement filter coefficients may be predetermined or may be adaptively determined.