摘要:
Embodiments of user equipment and methods for improved uplink transmission power management and scheduling, are generally described herein. For example, in an aspect, a method of uplink power management is presented, the method includes determining whether a total desired transmission power exceeds a total configured maximum output power for a subframe. When the total desired transmission power exceeds the total configured maximum output power, the method includes allocating a minimum proactive power limitation to each serving cell, assigning a remaining power to one or more channels based on priority, and computing a total power assignment based on the allocating and the assigning.
摘要:
A signal structure for use in D2D communications is described. In one embodiment, a preamble for automatic gain control at the receiver end is included in the transmitted signal. Techniques for scheduling of D2D transmissions using carrier sensing multiple access (CSMA) and a power control schemes for interference management are also described.
摘要:
Generally discussed herein are systems and apparatuses that are configured to determine a transmission power to communicate with and techniques for determining the transmission power. According to an example a technique can include pairing a first UE with a second UE, receiving a reference signal, determining a Signal to Interference Ratio (SIR) of the received reference signal, receiving one or more power control parameters, and determining a decided transmission power as a function of the one or more power control parameters and the SIR.
摘要:
An uplink feedback channel reporting method is disclosed for using the primary and secondary fast feedback channels to efficiently report the channel quality, MIMO feedback, and CQI types of data from a mobile station to a base station. The reporting method reports regular information periodically and non-regular information on demand.
摘要:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
摘要:
Example systems, methods, and devices for mitigating interference in wireless networks are discussed. One example method includes the operations of passing channel frequency offsets of a plurality of LTF symbols on a plurality of subcarriers through a high pass frequency band, encoding the plurality of LTF symbols with a plurality of LTF sequences across frequency, and encoding the LTF symbols in time and/or frequency. Another example includes the operations of receiving a plurality of LTF symbols on a plurality of subcarriers for channel estimation of one or more streams, removing the encoding across time, removing the encoding across frequency, and removing the LTF sequence(s), and passing the modified LTF symbols through a smoothing filter, for example, a low pass filter for removing the interference due to CFOs. Methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
摘要:
An energy aware framework for computation and communication devices (CCDs) is disclosed. CCDs may support applications, which may participate in energy aware optimization. Such applications may be designed to support execution modes, which may be associated with different computation and communication demands or requirements. An optimization block may collect computation requirement values (CRVM), communication demand values (CDVM), and such other values of each execution mode to perform a specific task(s). The optimization block may collect computation energy cost information (CECIM) and multi-radio communication energy cost information (MCECIM) for each execution mode. Also, the optimization block may collect the workload values of a cloud-side processing device. The optimization block may determine power estimation values (PEV), based on the energy cost values (CECIM), (MCECIM), CRVM, and CDVM. The optimization block may then determine the execution mode or the apparatus best suited to perform the tasks.
摘要:
In wireless communication networks that use ARQ/HARQ feedback protocols, when a first device receives an apparent HARQ ACK from a second device, the first device may make a new transmission using a HARQ Channel ID whose previous usage was under conditions indicating a likelihood of error in the ACK. When the second device receives the new transmission, the reuse of that HARQ Channel ID in a new transmission rather than a retransmission lets the second device know that its previous NAK transmission was incorrectly received as an ACK.