Abstract:
A frame structure for support of large delay spread deployment scenarios (e.g., cellular system operation in large cell sizes or low frequency bands) is generally presented. In this regard a method is introduced comprising partitioning a radio frame into a plurality of equal-sized (or non-equal-sized) sub-frames to simplify system implementation. Other embodiments are also disclosed and claimed.
Abstract:
Embodiments of an enhanced base station and method for communicating through an enhanced distributed antenna system (eDAS) are generally described herein. The eDAS includes geographically-separated antenna nodes and each of the antenna nodes has a plurality of antenna elements. The base station may perform physical-layer baseband processing for each of the antenna nodes at a centralized processing location, and may cause the antenna nodes to transmit reference signals in accordance with a multiplexing scheme to allow user equipment to perform channel estimation for the antenna elements of any one or more of the antenna nodes. The base station may also cause the antenna nodes to transmit signals having synchronization codes to allow the user equipment to synchronize with the antenna elements of any one or more of the antenna nodes. In some embodiments, the base station may communicate with the antenna nodes over a physical-layer interface.
Abstract:
In a wireless network, simultaneous support of distributed and contiguous sub-carrier allocation may be accomplished in the same sub-frame or time zone. Techniques are described herein that can be used to allocate distributed and/or contiguous basic (physical) resource blocks to users by specifying a codebook index and parent node. Techniques are described herein that can be used to flexibly set a number of sub-channels over which a subscriber station indicates a channel quality indicator to a base station. Sub-channels may be represented as nodes and may be grouped to include a parent node and child nodes. By specifying a code book to use and a parent node, the channel quality indicator of the parent and children nodes can be indicated.
Abstract:
Embodiments of a method and apparatus for discovery and association, by a mobile station, of a femto base station from a plurality of base stations. The mobile station may select a base station for consideration for association by decoding a physical layer identifier to determine that the base station is a macro base station and select a different base station based on other considerations. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
Abstract:
Embodiments of a method and apparatus for discovery and association, by a mobile station, of a femto base station from a plurality of base stations. The mobile station may select a base station for consideration for association by decoding a physical layer identifier to determine that the base station is a macro base station and select a different base station based on other considerations. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.