Abstract:
A measuring device for the property of a photovoltaic device and a measuring method using the same are provided. The measuring device includes several light sources and a feedback control module. The light color of each light source is different and includes several light-emitting elements symmetrically configured. The feedback control module is used for controlling illuminations of the light-emitting elements for measuring the property of a photovoltaic device.
Abstract:
A measuring apparatus for solar cell is provided, which is configured to measure a solar cell to obtain a characteristic curve thereof. The measuring apparatus includes a signal measurement control circuit and a signal transmitting control circuit. The signal measurement control circuit is configured to output at least one control signal for controlling a resistance circuit thereof to provide a measurement loading. The signal transmitting control circuit includes at least one path separating circuit, each path separating circuit is configured to provide at least two signal transmitting paths with different signal transmitting directions. The signal measurement control circuit outputs the control signal to the resistance circuit by using the signal transmitting control circuit, so that the resistance circuit can be controlled to provide the measurement loading.
Abstract:
A method and a device for battery detection are provided. In the method, multiple characteristic values measured from a battery during operation of the battery are captured via a data capturing device to form a characteristic curve. Curve fitting is performed on the characteristic curve to obtain a curve error. According to the magnitude of the curve error, it is determined whether the battery is normal. When the determination result is abnormal, a step-curvature radius analysis is performed on the characteristic curve to determine whether the battery is normal.
Abstract:
A measuring apparatus for solar cell is provided, which is configured to measure a solar cell to obtain a characteristic curve thereof. The measuring apparatus includes a signal measurement control circuit and a signal transmitting control circuit. The signal measurement control circuit is configured to output at least one control signal for controlling a resistance circuit thereof to provide a measurement loading. The signal transmitting control circuit includes at least one path separating circuit, each path separating circuit is configured to provide at least two signal transmitting paths with different signal transmitting directions. The signal measurement control circuit outputs the control signal to the resistance circuit by using the signal transmitting control circuit, so that the resistance circuit can be controlled to provide the measurement loading.
Abstract:
A defect inspection method and a defect inspection system for a solar cell are proposed, where the method includes the following steps. Output voltages and output currents of the solar cell are measured by a measuring device. A stepwise current-voltage curve (stepwise IV curve) and a fitted current-voltage curve (fitted IV curve) are generated by a processing device according to the output voltages and the output currents, and whether a first error of the fitted IV curve is less than a first error tolerance is determined by the processing device. When the first error is not less than the first error tolerance, whether there exists at least one surge in steps of the stepwise IV curve is determined by the processing device so as to determine whether the solar cell has a defect. Next, a determined result of the processing device is outputted by the output device.
Abstract:
A defect inspection method and a defect inspection system for a solar cell are proposed, where the method includes the following steps. Output voltages and output currents of the solar cell are measured by a measuring device. A stepwise current-voltage curve (stepwise IV curve) and a fitted current-voltage curve (fitted IV curve) are generated by a processing device according to the output voltages and the output currents, and whether a first error of the fitted IV curve is less than a first error tolerance is determined by the processing device. When the first error s not less than the first error tolerance, whether there exists at least one surge in steps of the stepwise IV curve is determined by the processing device so as to determine whether the solar cell has a defect. Next, a determined result of the processing device is outputted by the output device.
Abstract:
A method and a system for inspecting a defect of a solar cell are provided, and the method includes: receiving inspecting data corresponding to the solar cell from an inspecting device; obtaining a current-voltage (I-V) curve of the solar cell according to the inspecting data; defining a first reference region on the I-V curve, and obtaining a plurality of first curve characteristics of the I-V curve in the first reference region; determining a defect type of the solar cell according to the first curve characteristics.