Abstract:
An electrical protection system which uses a ground fault interrupter (GFI) to protect a circuit from (A) ground faults and (B) overcurrents and/or overvoltages. For overcurrent protection, a control element may be coupled in series with the line or return input to the GFI, and a bypass element may be coupled in parallel with the control element and the GFI. In case of an overcurrent, the control element causes current to be diverted through the bypass element, thereby creating a current imbalance in the GFI circuitry causing the GFI to open the circuit. For overvoltage protection, a bypass element (e.g. a varistor) may be coupled between, e.g., the line sense input of the GFI and the return sense input of the GFI. In case of an overvoltage, the bypass element conducts current, thereby creating a current imbalance in the GFI circuitry causing the GFI to open the circuit.
Abstract:
Electrical circuit protection arrangements with PTC devices and mechanical switches. The combinations of this invention permit the use of mechanical switches and PTC devices to switch voltages and currents in normal circuit operations, wherein the voltage and/or current ratings of the mechanical switches and PTC devices are much less than the normal operating voltages and currents of the circuits. This feature permits the use of smaller and less expensive mechanical switches and PTC device than would otherwise be required in such circuits. The arrangements of switches and PTC devices also permit the PTC devices to limit the magnitude of the fault current passed to the circuit.
Abstract:
A conventional ground fault circuit interrupter (GFCI) is modified to provide frequency-selective current protection. A control element is connected in series with the line path (or return path) of the GFCI, and a bypass element is connected in parallel with the combination of the control element and the line path (or return path) of the GFCI. Under normal conditions, little or no current flows through the bypass element. However, frequency response characteristics of the control and/or bypass elements are such that a frequency-selective component of the current (i.e. high-pass, low-pass or band-pass) is diverted through the bypass element. When the magnitude of the frequency-selective component reaches a predetermined value, the bypass current flow causes sensing of a resulting current imbalance and tripping of the GFCI.
Abstract:
Described herein are optical devices including resonant cavity structures. In one embodiment, an optical fiber includes: (1) an elongated core including an outer surface; (2) an inner reflector disposed adjacent to the outer surface of the core and extending substantially along a length of the core; (3) an outer reflector spaced apart from the inner reflector and extending substantially along the length of the core; and (4) an emission layer disposed between the outer reflector and the inner reflector and extending substantially along the length of the core, the emission layer configured to emit radiation that is guided within the optical fiber.
Abstract:
Described herein are solar modules including spectral concentrators. In one embodiment, a solar module includes an active layer including a set of photovoltaic cells. The solar module also includes a spectral concentrator optically coupled to the active layer and including a luminescent material that exhibits photoluminescence in response to incident solar radiation. The photoluminescence has: (a) a quantum efficiency of at least 30 percent; (b) a spectral width no greater than 100 nm at Full Width at Half Maximum; and (c) a peak emission wavelength in the near infrared range.
Abstract:
Described herein are solar modules including spectral concentrators. In one embodiment, a solar module includes a set of photovoltaic cells and a spectral concentrator optically coupled to the set of photovoltaic cells. The spectral concentrator is configured to: (1) collect incident solar radiation; (2) convert the incident solar radiation into substantially monochromatic, emitted radiation; and (3) convey the substantially monochromatic, emitted radiation to the set of photovoltaic cells.
Abstract:
Described herein are optical devices including resonant cavity structures. In one embodiment, an optical fiber includes: (1) an elongated core including an outer surface; (2) an inner reflector disposed adjacent to the outer surface of the core and extending substantially along a length of the core; (3) an outer reflector spaced apart from the inner reflector and extending substantially along the length of the core; and (4) an emission layer disposed between the outer reflector and the inner reflector and extending substantially along the length of the core, the emission layer configured to emit radiation that is guided within the optical fiber.
Abstract:
Described herein are solar modules including spectral concentrators. In one embodiment, a solar module includes a set of photovoltaic cells and a spectral concentrator optically coupled to the set of photovoltaic cells. The spectral concentrator is configured to: (1) collect incident solar radiation; (2) convert the incident solar radiation into substantially monochromatic, emitted radiation; and (3) convey the substantially monochromatic, emitted radiation to the set of photovoltaic cells.
Abstract:
Hybrid integrated planar photonics provides silica waveguides for transport and polymer or hybrid silica/polymer waveguides for refractive-based active functions within a single integrated photonic circuit. Functions include modulation, attenuation, switching, filtering, and exceptionally low-loss transport. When the active and passive optical elements are integrated onto the same substrates, the resulting composite devices can exhibit strong functional response with little total optical loss as compared to known methods.
Abstract:
A high voltage insulator has a polymeric core that forms a mechanical strength member and an outer covering of a heat-shrinkable polymeric tube that is electrically insulating and non-tracking and that has sheds on its outer surface.