Abstract:
An illumination system comprising is disclosed. The illumination system may include a narrowband illumination source. The illumination system may include an illumination path including one or more illumination optics. The illumination system may include a quantum dot assembly within the illumination path, the quantum dot assembly comprising a quantum dot layer disposed on a substrate, wherein the quantum dot assembly is configured to receive a narrowband illumination beam from the narrowband illumination source and emit a converted illumination beam having a spectral range broader than the narrowband illumination beam. The illumination system may include wherein the one or more illumination optics are configured to direct illumination from the quantum dot assembly to a sample disposed on a sample stage.
Abstract:
An injection-seeded whispering gallery mode optical amplifier. The amplifier includes a micro or nanoscale whispering gallery mode resonator configured to amplify a whispering gallery mode therein via a gain medium separated from the whispering gallery mode resonator but within the evanescent field of the whispering gallery mode resonator. A pump stimulates the whispering gallery mode. A plasmonic surface couples power into the whispering gallery mode resonator.
Abstract:
An injection-seeded whispering gallery mode optical amplifier. The amplifier includes a micro or nanoscale whispering gallery mode resonator configured to amplify a whispering gallery mode therein via a gain medium separated from the whispering gallery mode resonator but within the evanescent field of the whispering gallery mode resonator. A pump stimulates the whispering gallery mode. A plasmonic surface couples power into the whispering gallery mode resonator.
Abstract:
Described herein are multi-segmented nanowires, nanosheets and nanobelts, and devices and methods using them for the generation of multicolor and white light.
Abstract:
A nanoparticle waveguide apparatus, a nanoparticle waveguide photonic system and a method of photonic transmission employ a nearfield-coupled nanoparticle (NCN) waveguide to cooperatively propagate an optical signal. The nanoparticle waveguide apparatus includes a first optical waveguide adjacent to a second optical waveguide, the first optical waveguide comprising an NCN waveguide having a plurality of nanoparticles. The nanoparticle waveguide photonic system further includes a nearfield coupling (NC) modulator. The method includes providing the NCN waveguides and modulating a coupling between one or both of first and second NCN waveguides and adjacent nanoparticles within one or both of the first and second NCN waveguides.
Abstract:
A random laser comprising a substrate and a rare earth-doped glass fabricated on the substrate in the form of a waveguide, wherein the glass comprises a germanium glass, a titanium glass, or a chalcogenide glass.
Abstract:
Disclosed is an amplifying optical fiber having a central core and an optical cladding surrounding the central core. The central core is based on a silica matrix that includes nanoparticles, which are composed of a matrix material that includes doping ions of at least one rare earth element. The amplifying optical fiber can be employed, for example, in an optical amplifier and an optical laser.
Abstract:
A method of producing a lasing microsource of colloidal nanocrystals. The method includes the steps of preparing a nanocrystal solution in a solvent; depositing at least a drop of the nanocrystals solution with a drop volume below 1 nl on a flat substrate; and evaporating the solvent to dryness thereby to obtain at the edge of the evaporated drop a single annular stripe including a domain wherein the nanocrystals are arranged in an ordered array, wherein the ordered nanocrystals in the domain constitute an active region capable of lasing and the radially inner and outer edges of the stripe define a resonant cavity in which the active region is inserted.
Abstract:
Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.
Abstract:
A laser gain medium and laser system include a host material, a plurality of quantum dots dispersed throughout the host material, and a plurality of laser active ions surrounding each of the quantum dots. The laser active ions are disposed in close proximity to the quantum dots such that energy absorbed by the quantum dots is transferred to the ions, thereby exciting the ions to produce laser output. In an illustrative embodiment, each quantum dot is surrounded by an external shell doped with the laser active ions.