摘要:
A charged-particle beam exposure apparatus includes a charged-particle beam source for emitting a charged-particle beam, an electrooptic system array which has a plurality of electron lenses and forms a plurality of intermediate images of the charged-particle beam source by the plurality of electron lenses, and a projection electrooptic system for projecting on a substrate the plurality of intermediate images formed by the electrooptic system array. The electrooptic system array includes at least two electrodes arranged along paths of a plurality of charged-particle beams, each of the at least two electrodes having a plurality of apertures on the paths of the plurality of charged-particle beams, and a shield electrode which is interposed between the at least two electrodes and has a plurality of shields corresponding to the respective paths of the plurality of charged-particle beams.
摘要:
A charged-particle beam exposure apparatus includes a charged-particle beam source for emitting a charged-particle beam, an electrooptic system array which has a plurality of electron lenses and forms a plurality of intermediate images of the charged-particle beam source by the plurality of electron lenses, and a projection electrooptic system for projecting on a substrate the plurality of intermediate images formed by the electrooptic system array. The electrooptic system array includes at least two electrodes arranged along paths of a plurality of charged-particle beams, each of the at least two electrodes having a plurality of apertures on the paths of the plurality of charged-particle beams, and a shield electrode which is interposed between the at least two electrodes and has a plurality of shields corresponding to the respective paths of the plurality of charged-particle beams.
摘要:
A semiconductor manufacturing factory includes a plurality of semiconductor manufacturing apparatuses including an exposure apparatus for exposing a substrate by using a plurality of charged particle beams, a local area network for connecting the plurality of semiconductor manufacturing apparatuses, and a gateway for connecting the local area network to an external network of the semiconductor manufacturing factory. The exposure apparatus includes a lens array, which has a plurality of lenses and directs a plurality of charged particle beams onto a substrate. The lens array includes at least two electrodes having a plurality of apertures on the paths of the plurality of charged-particle beams, and a shield electrode interposed between the at least two electrodes.
摘要:
This invention relates to an electrooptic system array having a plurality of electron lenses. The electrooptic system array includes upper, middle, and lower electrodes arranged along the paths of a plurality of charged-particle beams, the upper, middle, and lower electrodes having pluralities of apertures on the paths of the plurality of charged-particle beams, an upper shield electrode which is interposed between the upper and middle electrodes and has a plurality of shields corresponding to the respective paths of the charged-particle beams, and a lower shield electrode which is interposed between the lower and middle electrodes and has a plurality of shields corresponding to the respective paths of the charged-particle beams.
摘要:
A mask stage speed |Vm|, a wafer stage speed |Vw|, and an absolute value |&Dgr;S| of a beam deflection value are determined (step 101). Then, it is judged whether a stripe number is even or odd (step 108) and deflective directions of a mask stage, a wafer stage, and a wafer deflector are set in accordance with the above judgment result (steps 109 and 110). Then, the wafer stage and mask stage respectively start continuous movement (step 113) and divided patterns are exposed (step 115-119). It is judged whether all divided patterns are exposed (step 120). When all divided patterns are not exposed, the next divided pattern is exposed by adding a deflection value on a wafer corresponding to a beam width on a mask (step 121).
摘要:
A manufacturing method of an image display apparatus having a substrate and a conductive supporting frame formed at a periphery of the substrate includes steps of forming a wiring on the substrate, and forming an insulating layer on the wiring. The insulating layer includes a silicon nitride or a silicon oxide deposited by a sputtering technique. The insulating layer is seal-bonded with the conductive supporting frame.
摘要:
High-contrast exposure is performed by use of a small dose of electron beams, a pattern is formed on a wafer with high accuracy, and high-precision inspection is performed. In pattern formation, proximity effect correction processing is performed. Moreover, exposure of electron beams is performed based on a result of filtering using an inverse characteristic of exposure characteristics of the electron beams. Furthermore, in pattern inspection, electron beams are irradiated based on a result of filtering for obtaining a peripheral region of an edge of the pattern formed.
摘要:
An exposure apparatus which draws a pattern on a substrate with a charged particle beam is disclosed. The exposure apparatus includes a detector which detects a charged particle beam, a deflector which deflects the charged particle beam to scan the substrate or the detector with the charged particle beam, and a controller which controls the deflector to scan each of a plurality of scanning ranges on the detector with the charged particle beam, and calculates, on the basis of the charged particle beam amount detected by the detector upon scanning the plurality of scanning ranges, the intensity distribution of the charged particle beam which strikes the detector.
摘要:
In a charged particle beam exposure method of applying/not applying charged particle beams to expose a substrate by deflecting the charged particle beams to move the charged particle beams on a blanking aperture stop, the size of the charged particle beams on the blanking aperture stop is made larger than the size of the blanking aperture stop.
摘要:
This invention provides a multi-charged-particle beam exposure apparatus capable of easily correcting at a high precision the electron-optic characteristics of each column which constitutes an electron-optic system. The exposure apparatus has magnetic lens arrays (ML1, ML2, ML3, and ML4) which commonly adjust the electron-optic characteristics of a plurality of columns which constitute the electron-optic system, and dynamic focus lenses or deflector arrays which individually correct the electron-optic characteristics of the columns.