摘要:
An approach for increasing transmission throughput of a non-linear wireless channel, and efficient decoding of the transmitted signal via a simplified receiver, is provided. A signal reflects a source signal, and includes linear inter-symbol interference based on a faster-than-Nyquist signaling rate and a tight frequency roll-off, and non-linear interference based on high-power amplification for transmission over the wireless channel. The signal is received over a non-linear wireless channel, and is processed via a plurality of decoding iterations. A set of soft information of a current decoding iteration is generated based on a current estimate of the source signal and a final set of soft information from a previous decoding iteration. The current estimate of the source signal is based on an estimate of the linear ISI and the non-linear interference, which is based on the final set of soft information from the previous decoding iteration.
摘要:
A signal transmission approach comprises encoding a source signal (comprising source symbols) to generate a corresponding encoded signal. The encoded signal is modulated by mapping each source symbol to a respective signal constellation point of an applied signal constellation to generate a modulated signal. The modulated signal is pre-distorted based on a distortion estimate to generate a pre-distorted signal. The pre-distorted signal is filtered to generate a filtered signal. The filtered signal is frequency translated and amplified to generate a transmission signal for transmission via an uplink channel of a satellite communications system. To increase throughput, the source signal is processed through the apparatus and the resulting transmission signal is generated at a Faster-than-Nyquist (FTN) symbol rate and with a tight frequency roll-off. The modulated signal is pre-distorted based on a distortion estimate relating to the nonlinearity and the filters applied before and/or after the pre-distorter.
摘要:
A signal transmission approach comprises encoding a source signal (comprising a plurality of source symbols) to generate a corresponding encoded signal. The encoded signal is modulated by mapping each source symbol to a respective signal constellation point of an applied signal constellation to generate a modulated signal. The modulated signal is pre-distorted based on a distortion estimate to generate a pre-distorted signal. The pre-distorted signal is filtered to generate a filtered signal. The filtered signal is frequency translated and amplified to generate a transmission signal for transmission via an uplink channel of a satellite communications system. To increase throughput, the source signal is processed through the apparatus and the resulting transmission signal is generated at a Faster-than-Nyquist (FTN) symbol rate and with a tight frequency roll-off. The modulated signal is pre-distorted based on a distortion estimate relating to the nonlinearity and the filters applied before and/or after the pre-distorter.
摘要:
A parameterized interleaver design process is provided, which optimizes the design for interleavers of any size, and can be completely specified using only a few design parameters. According to the parameterized interleaver design process an interleaver π(i) of a length N is generated. A number of subpermutation masks are defined, and a first intermediate interleaver permutation is partitioned into a number of subgroups, wherein the number of subgroups corresponds with the number of subpermutation masks. Each of the subgroups of the first intermediate interleaver permutation is partitioned into a number of further subgroups, and each of the subpermutation masks is applied to each of the further subgroups of a corresponding subgroup of the first intermediate interleaver permutation, resulting in a corresponding portion of a second intermediate interleaver permutation. The resulting interleaver π(i) is generated based at least in part on the first and second intermediate interleaver permutations.
摘要:
A satellite communication system that combines the benefits of Geosynchronous Equatorial Orbit (GEO) and Non-geostationary (NGSO) satellite systems into a GEO-NGSO hybrid satellite system. The hybrid system allows for various uses, such as, a NGSO-GEO-NGSO handoff, a GEO-NGSO-GEO handoff, and/or a multi-transport operation utilizing both the GEO and NGSO satellites. Based on the path delay differences of the GEO and NGSO satellites, the system may create a data buffer to ensure no data loss.
摘要:
A method and system for delivering services to terminals and associated edge devices in a satellite communication system. A network node remotely creates at least one service appliance within a terminal of the satellite communication system and customer premise equipment (CPE) connected to the terminal. Containerized applications are then transmitted from the network node to the service appliance. The service appliance subsequently executes the containerized application using hardware resources of the terminal and CPE. Usage of the containerized application can also be monitored.
摘要:
An approach is provided for increasing transmission throughput rates for a source signal transmitted over a wireless channel, applying faster-than-Nyquist (FTN) signaling rates combined with tight frequency roll-off to the a source signal. A receiver is provided that compensates for ISI effects induced by the FTN rate and tight frequency roll-off, where the complexity of the receiver grows only linearly with the interference memory. The receiver comprises an equalizer configured to compensate for the ISI effects, and a decoder configured to decode the output of the equalizer to determine and regenerate the source signal. The receiver processes the received signal via a plurality of processing iterations. For one processing iteration, the decoder generates a set of a posteriori soft information based on the output of the equalizer, and the equalizer uses the a posteriori soft information as a priori soft information for a subsequent processing iteration.
摘要:
Approaches are provided for closing communications channel links (e.g., for small terminal applications in satellite communications systems), at lower effective data rates, in a most power efficient manner, while still meeting regulatory requirements. Such approaches employ modulation and coding schemes that facilitate such lower effective data rates in a most power efficient manner. The new modulation and coding schemes include new low density parity check (LDPC) codes.
摘要:
An approach for encoding a physical layer (PL) header of a PL data frame is provided. The PL header comprises sixteen information bits ui, (i=0, 1, 2, . . . , 15), and the encoding is based on a convolutional code, whereby, for each information bit, five associated parity bits Pi,k, (k=0, 1, 2, 3, 4) are generated, resulting in 80 codebits. The resulting 80 codebits are punctured to form a (16,77) codeword (c0, c1, c2, . . . , c76). The codebits of the (16,77) codeword are repeated to generate a (16,154) physical layer signaling codeword (c0, c0, c1, c1, c2, c2, . . . , c76, c76) for transmission of the PL data frame over a channel of a communications network. Further, for each information bit, each of the associated five parity bits is generated based on a parity bit generator, as follows: pi,k=(ui*gk,0)⊕(s0*gk,1)⊕(S1*gk,2)⊕(S2*gk,3)⊕(S3*gk,4), where S0=ui-1, S1=ui-2, S2=i-3, S3=ui-4, and wherein generator polynomials for gk=(gk,0, gk,1, gk,2, gk,3, gk,4), are as follows: g0=(1, 0, 1, 0, 1); g1=(1, 0, 1, 1, 1) ; g2=(1, 1, 0, 1, 1); g3=(1, 1, 1, 1, 1); g4=(1, 1, 0, 0, 1).
摘要:
Systems and methods are described, and one method includes allocate a continuous duration within a TDMA scheme, for asynchronous NOMA transmissions, and extending from an allocation start time to an allocation termination time, formed of contiguous time slots of the TDMA scheme, and included providing to asynchronous NOMA user terminals an indication of the allocation start time and termination time, indicating allowance to perform asynchronous NOMA transmissions within a start time constraint that starts of the asynchronous NOMA transmissions do not precede the allocation start time, and terminations of the asynchronous NOMA transmissions do not succeed the allocation termination time.