Abstract:
The present invention relates to enabling a versatile charged particle beam device, which is used for a wide range of kinds of samples to be observed and has parameters of emission conditions of a primary charged particle beam that is difficult to be registered in advance, to be operated easily and accurately even by a less-experienced operator and to obtain high-resolution images. A charged particle beam device according to the present invention includes, for example: a charged particle source, a focusing lens for a primary charged particle beam emitted from the charged particle source, an objective lens for focusing the primary charged particle beam, a movable objective aperture having multiple objective apertures disposed on a side of the charged particle source with respect to the objective lens, a detector of a secondary signal from the sample resulting from emission of the primary charged particle beam, a display unit configured to process and display a detected secondary signal, and a storage unit configured to store multiple emission conditions of the primary particle beam. The operation controller makes one emission condition be selected, determines whether or not the objective aperture is suitable for the selected emission condition, displays that the objective aperture is unsuitable when the objective aperture is unsuitable, and preadjusts the primary charged particle beam according to the selected emission condition and stores the preadjustment result as parameters for the emission conditions when the objective aperture is suitable.
Abstract:
In the case of an in situ observation with a charged particle beam apparatus, an observer who is not an expert in the charged particle beam apparatus needs to maintain the field of view of the observation that changes from moment to moment while watching a monitor, and thus, adjustment of the field of view needs to be controllable in real time with a good operability. In order to eliminate the need for an observer to move the line of sight, a live image and a comparison image are overlapped and displayed. At this time, an interface is devised, such that overlapping of two images can be executed without giving stress to the observer. The observer presses a button on an operation screen, thereby displaying a superimposed image, which is obtained by making the comparison image matching the size of a first display area configured to display the live image translucent and superimposing the translucent comparison image on the live image, at the position of the first display area of the image display device.
Abstract:
The objective of the present invention is to provide a charged particle beam device, wherein the positional relationship between reflected electron detection elements and a sample and the vacuum state of the sample surroundings are evaluated to select automatically a reflected electron detection element appropriate for acquiring an intended image. In this charged particle beam device, all the reflected electron detection elements are selected when the degree of vacuum inside the sample chamber is high and the sample is distant from the reflected electron detectors, while a reflected electron detection element appropriate for acquiring a compositional image or a height map image is selected when the degree of vacuum inside the sample chamber is high and the sample is close to the reflected electron detectors. When the degree of vacuum inside the sample chamber is low, all the reflected electron detection elements are selected.