Abstract:
According to one embodiment, a holder includes a top member, a side member, and a bottom member. The top member has a hole for allowing transmission of a charged particle beam, and the sample is mountable in the hole. The bottom member is provided to overlap with the top member in a plan view. The side member is connected to a part of the top member and a part of the bottom member such that the top member and the bottom member are separated from each other in a cross-sectional view. An opening portion is a region surrounded by the top member, the side member, and the bottom member, and a scintillator is provided in the opening portion.
Abstract:
To provide a charged particle beam apparatus. The charged particle beam apparatus includes: a stage on which a sample is placed; a cleaner configured to remove a contaminant on the sample; and a stage control unit configured to adjust a relative positional relationship between the cleaner and the sample by moving the stage during use of the cleaner.
Abstract:
The objective of the present invention is to provide a charged particle beam device, wherein the positional relationship between reflected electron detection elements and a sample and the vacuum state of the sample surroundings are evaluated to select automatically a reflected electron detection element appropriate for acquiring an intended image. In this charged particle beam device, all the reflected electron detection elements are selected when the degree of vacuum inside the sample chamber is high and the sample is distant from the reflected electron detectors, while a reflected electron detection element appropriate for acquiring a compositional image or a height map image is selected when the degree of vacuum inside the sample chamber is high and the sample is close to the reflected electron detectors. When the degree of vacuum inside the sample chamber is low, all the reflected electron detection elements are selected.