Abstract:
The present disclosure describes optical imaging and optical detection modules that include sensors such as time-of-flight (TOF) sensors. Various implementations are described that, in some instances, can help reduce the amount of optical cross-talk between active detection pixels and reference pixels and/or can facilitate the ability of the sensor to determine an accurate phase difference to be used, for example, in distance calculations.
Abstract:
This disclosure describes optoelectronic devices that include an event-driven photo-array and methods for using the same. The methods include capturing output signals over a particular illumination time via a change-detection circuit. In some instances, a threshold intensity change can trigger the change-detection circuit. In some instances, an active illumination from an illumination module may produce the threshold intensity change. Output signals may be used to generate distance data. In some instances, the output signals may be substantially free from noise due to background light.
Abstract:
An optoelectronic module operable to acquire distance data and spectral data includes an array of demodulation pixels and an array of spectral filters. The demodulation pixels can possess an intrinsic wavelength-dependent sensitivity, wherein the intrinsic wavelength-dependent sensitivity can be offset by an intensity balancing micro-lens array in some cases. In some cases, the intrinsic wavelength-dependent sensitivity can be offset by a combined filter array, while in other cases the intrinsic wavelength-dependent sensitivity can be offset by an intensity balancing filter array. Still in other cases, the demodulation pixels can be operable in such as to offset the intrinsic wavelength-dependent sensitivity.
Abstract:
The present disclosure describes quantum dot film based demodulation structures and optical ranging systems including an array of QDF demodulation structures.
Abstract:
The present disclosure describes quantum dot film based demodulation structures and optical ranging systems including an array of QDF demodulation structures.
Abstract:
Optoelectronic modules (100) are operable to distinguish between signals indicative of reflections from an object of interest and signals indicative of a spurious reflection. Various modules are operable to recognize spurious reflections by means of dedicated spurious-reflection detection pixels (126) and, in some cases, also to compensate for errors caused by spurious reflections.
Abstract:
An imaging device, including a monolithic semiconductor integrated circuit substrate, comprises a focal plane array of pixel cells. Each one of the pixel cells includes a gate overlying a region of the substrate operable to convert incident radiation into charge carriers. The pixel also includes a CMOS readout circuit including at least one output transistor in the substrate. The pixel further includes a charge coupled device section on the substrate adjacent the gate, the charge coupled device section including a sense node to receive charge carriers transferred from the region of the substrate beneath the gate. The sense node is coupled to the output transistor. The pixel also includes a reset switch coupled to the sense node. The pixel's charge coupled device section has a buried channel region. The pixel also includes one or more bias enabling switches operable to enable a bias voltage to be applied to the gate. At least one of the reset switch or the one or more bias enabling switches is formed in the buried channel region.