摘要:
Micro electromechanical devices and methods for designing such devices are disclosed. An example micro electromechanical device includes at least two anchors. The example device also includes a floating element. The floating element extends between the at least two anchors and includes a predetermined reference portion. In at least one predetermined state during operation of the device, the reference portion is located within a predetermined reference plane. The floating element includes at least two flexible sections, where the at least two flexible sections each extends between the reference portion and a respective one of the anchors. In the example device, at least two of the at least two flexible sections include respective stress relieving elements. The stress relieving elements enable deflection of the floating element as a result of a stress gradient. The stress relieving elements are provided at predetermined locations between the respective anchors and the reference portion, where the predetermined locations are selected such that the reference portion is substantially located within the predetermined reference plane in the at least one predetermined state of the device.
摘要:
Methods for designing a micro electromechanical device are disclosed. In one embodiment, the method comprises extending a floating element between a first anchor point and a second anchor point. The floating element includes a predetermined reference portion. The method further comprises determining a first location for a first stress relieving element on a first flexible section located between the first anchor point and the reference point, and determining a second location for a second stress relieving element on a second flexible section located between the second anchor point and the reference point. The method additionally comprises placing the first and second stress relieving elements at the first and second determined locations, respectively, thereby causing the reference portion to be located within a predetermined reference plane while in at least one predetermined state.
摘要:
A system is disclosed that includes an oven and a micromechanical oscillator inside the oven configured to oscillate at a predetermined frequency at a predetermined temperature, where the predetermined frequency is based on a temperature dependency and at least one predetermined property. The system further includes an excitation mechanism configured to excite the micromechanical oscillator to oscillate at the predetermined frequency and a temperature control loop configured to detect a temperature of the micromechanical oscillator using resistive sensing, determine whether the temperature of the micromechanical oscillator is within a predetermined range of the predetermined temperature based on the temperature dependency and the at least one predetermined property in order to minimize frequency drift, and adapt the temperature of the micromechanical oscillator to remain within the predetermined range. The system further includes a frequency output configured to output the predetermined frequency of the micromechanical oscillator.
摘要:
One inventive aspect relates to a reconfigurable cavity resonator. The resonator comprises a cavity delimited by metallic walls. The resonator further comprises a coupling device for coupling an electromagnetic wave into the cavity. The resonator further comprises a tuning element for tuning a resonance frequency at which the electromagnetic wave resonates in the cavity. The tuning element comprises one or more movable micro-electromechanical elements with an associated actuation element located in their vicinity for actuating each of them between an up state and a down state. The movable micro-electromechanical elements at least partially have a conductive surface and are mounted within the cavity.
摘要:
A method is described for designing a micro electromechanical device in which the risk of self-actuation of the device in use is reduced. The method includes locating a first conductor in a plane and locating a second conductor with its collapsible portion at a predetermined distance above the plane. The method also includes laterally offsetting the first conductor by a predetermined distance from a region of maximum actuation liability. The region of maximum actuation liability is where an attraction force to be applied to activate the device is at a minimum.
摘要:
In a MEMS element 500 where a MEMS structure 201 is hermetically sealed in a cavity 110 by a substrate 301 and laminated structure 120, interface sealing layers 101, 102 and 103 are provided between two layers that constitute the laminated structure 120, so as to prevent gas from breaking into the cavity 110 through the interface between two layers along the direction parallel to the surface of the substrate 301.
摘要:
A microelectromechanical (MEMS) resonator is disclosed that comprises a substrate and a resonator body suspended above the substrate by means of clamped-clamped beams, where each beam comprises two support legs with a common connection to the resonator body, and the resonator body is configured to resonate at an operating frequency. The MEMS resonator further comprises an excitation component configured to excite the resonator body to resonate at the operating frequency, where each beam is further configured to oscillate in a flexural mode at a flexural wavelength as a result of resonating at the operating frequency, and each leg is acoustically long with respect to the flexural wavelength.
摘要:
The present disclosure provides a device including a MEMS resonating element, provided for resonating at a predetermined resonance frequency, the MEMS resonating element having at least one temperature dependent characteristic, a heating circuit arranged for heating the MEMS resonating element to an offset temperature (Toffset), a sensing circuit associated with the MEMS resonating element and provided for sensing its temperature dependent characteristic, and a control circuit connected to the sensing circuit for receiving measurement signals indicative of the sensed temperature dependent characteristic and connected to the heating circuit for supplying a control signal thereto to maintain the temperature of the MEMS resonating element at the offset temperature. The heating circuit includes a tunable thermal radiation source and the MEMS resonating element is provided so as to absorb at least a portion of the thermal radiation generated by the tunable thermal radiation source.
摘要:
A tuneable film bulk acoustic resonator (FBAR) device. The FBAR device includes a bottom electrode, a top electrode and a piezoelectric layer in between the bottom electrode and the top electrode. The piezoelectric layer has a first overlap with the bottom electrode, where the first overlap is defined by a projection of the piezoelectric layer onto the bottom electrode in a direction substantially perpendicular to a plane of the bottom electrode. The FBAR device also includes a first dielectric layer in between the piezoelectric layer and the bottom electrode and a mechanism for reversibly varying an internal impedance of the device, so as to tune a resonant frequency of the FBAR device.
摘要:
An interconnect module and a method of manufacturing the same. The method of making an interconnect module on a substrate comprises forming an interconnect section on the substrate. The interconnect section comprises at least two metal interconnect layers separated by a dielectric layer. The method further comprises forming a passive device on the substrate at a location laterally adjacent to the interconnect section. The passive device comprises at least one moveable element comprising a metal layer. The method further comprises forming the metal layer and one of the at least two metal interconnect layers from substantially the same material.