Abstract:
Methods for forming prelithiated electroactive materials are provided. Methods include preparing a precursor that includes lithium and silicon and centrifugally distributing the precursor using a centrifugal atomizing reactor. Methods for preparing the precursor include contacting a first mixture including lithium and having a first temperature and a second mixture including silicon and having a second temperature in a mixing chamber to form a precursor. The first mixture and the second mixture each enters the mixing chamber at a pressure greater than or equal to about 10 PSI. The second temperature is greater than the first temperature. Centrifugally distributing the precursor includes contacting the precursor with a rotating surface in a centrifugal atomizing reactor and solidifying the precursor to form a plurality of substantially round solid electroactive particles including lithium and silicon and having D50 diameters of less than or equal to about 30 micrometers.
Abstract:
A method of manufacturing a crystalline aluminum-iron-silicon alloy and a crystalline aluminum-iron-silicon alloy part. An aluminum-, iron-, and silicon-containing composite powder is provided that includes an amorphous phase and a first crystalline phase having a hexagonal crystal structure at ambient temperature. The composite powder is heated at a temperature in the range of 850° C. to 950° C. to transform at least a portion of the amorphous phase into the first crystalline phase and to transform the composite powder into a crystalline aluminum-iron-silicon (Al—Fe—Si) alloy. The first crystalline phase is a predominant phase in the crystalline Al—Fe—Si alloy.
Abstract:
Systems and methods for growth of multi-component single crystals are described. A first solution is flowed over a surface of a seed crystal coupled to a nozzle such that a plurality of first ions solvated in the first solution and a plurality of second ions in a second solution combine on the surface of the seed crystal to grow the single-crystal thereon. The first solution and the second solution are immiscible. A feed tank is fluidly coupled to the at least one nozzle and includes the first solution. In some aspects, the nozzle is configured to flow both the first solution and the second solution over the seed crystal.
Abstract:
An electrode for a battery is provided. The electrode has a first active layer including a first active material, an interlayer including a conductive material, and a second active layer including a second active material. The interlayer is disposed between the first active layer and the second active layer. Methods for fabricating the electrode are also provided.
Abstract:
Methods of making high-strength, lightweight alloy components capable of high temperature performance comprising aluminum, silicon, and iron and/or nickel are provided. A high-energy stream, such as a laser or electron beam, may be selectively directed towards a precursor material to melt a portion of the precursor material in a localized region. The molten precursor material is cooled at a rate of greater than or equal to about 1.0×105 K/second to form a solid high-strength, lightweight alloy component comprising a stable ternary cubic phase having high heat resistance and high strength. The stable ternary phase may be AlxFeySiz, where x ranges from about 4 to about 5 or about 7.2 to about 7.6, y is about 1.5 to about 2.2, and z is about 1. The stable ternary phase may also be Al6Ni3Si. Materials and components, such as automotive components, made from such methods are also provided.
Abstract:
According to aspects of the present disclosure, a ternary alloy includes a dual-phase microstructure including a first phase and a second phase. The first phase defines a hexagonal close-packed structure with a stoichiometric ratio of Al4Fe1.7Si. The second phase defines a face-centered cubic structure with a stoichiometric ratio of Al3Fe2Si. The dual-phase microstructure is stable above about 800° C., and the dual-phase microstructure has a first-phase abundance greater than about 50 parts by weight and a second-phase abundance less than about 50 parts by weight based on 100 parts by weight of the ternary alloy.
Abstract:
A vehicle part or component includes a surface that is configured to contact a fuel containing ethanol. The surface has a layer of non-hydrogenated diamond like carbon (NH-DLC) material disposed on the surface. The layer of NH-DLC has a thickness of from greater than or equal to about 100 nm to less than or equal to about 100 μm. The NH-DLC material has a carbon content of greater than or equal to about 90 atomic % (at. %), a carbon-carbon sp3 hybrid bond content of from greater than or equal to about 60% to less than or equal to about 100%, and a carbon-carbon sp2 hybrid bond content of from greater than or equal to about 0 to less than or equal to about 40%. The NH-DLC material is substantially free of hydrogen atoms. Methods for manufacturing the vehicle part or component are also provided.
Abstract:
In an example method, a transition metal precursor is selected so its transition metal has a diffusion rate that is slower than a diffusion rate of silicon. An aqueous mixture is formed by dissolving the precursor in an aqueous medium, and adding silicon particles to the medium. The mixture is exposed to a hydroxide, which forms a product including the silicon particles and a transition metal hydroxide precipitate. The product is dried. In an inert or reducing environment, silicon atoms of the silicon particles in the dried product are caused to diffuse out of, and form voids in and/or at a surface of, the particles. At least some silicon atoms react with the transition metal hydroxide in the dried product to form i) a SiOx (0
Abstract:
A vehicle braking component having a composite structure includes a brake core comprising an aluminum alloy, the brake core defining a core surface, a thermal barrier layer comprising a thermally insulating material, and an adhesion layer between the core surface and the thermal barrier layer to facilitate adhesion between the thermal barrier layer and the brake core. The adhesion layer includes a metal. The vehicle braking component includes a wear-resistant layer on the thermal barrier layer. The wear-resistance layer includes an iron-aluminum-silicon-zirconium alloy and defines a friction surface of the vehicle braking component.
Abstract:
A brake rotor having a composite structure may include an annular body defining opposite friction surfaces of the brake rotor. The annular body may include a core made of an Al—Si alloy, a thermal barrier layer made of a thermally insulating material disposed on the core, and a wear-resistant layer made of an Fe—Al—Si—Zr alloy disposed on the core over the thermal barrier layer. The wear-resistant layer may define a first one of the opposite friction surfaces of the annular body.