Synthesis Of Platinum-Alloy Nanoparticles And Supported Catalysts Including The Same
    5.
    发明申请
    Synthesis Of Platinum-Alloy Nanoparticles And Supported Catalysts Including The Same 有权
    铂 - 合金纳米粒子的合成及其包含的纳​​米催化剂

    公开(公告)号:US20130053239A1

    公开(公告)日:2013-02-28

    申请号:US13653688

    申请日:2012-10-17

    Abstract: Methods of synthesizing platinum-nickel-alloy nanoparticles and supported catalysts comprising the nanoparticles are provided. The methods may comprise forming a reaction mixture in a reaction vessel; heating the reaction mixture sealed in the reaction vessel to a reaction temperature; maintaining the temperature of the reaction vessel for a period of time; cooling the reaction vessel; and removing platinum-alloy nanoparticles from the reaction vessel. The reaction mixture may comprise a platinum precursor, a nickel precursor, a formamide reducing solvent, and optionally a cobalt precursor. In some embodiments the reaction temperature is at or below the boiling point of the formamide reducing solvent, such as from about 120° C. to about 150° C., for example. The platinum-alloy nanoparticles provide favorable electrocatalytic activity when supported on a catalyst support material.

    Abstract translation: 提供合成铂 - 镍合金纳米颗粒的方法和包含纳米颗粒的负载型催化剂。 所述方法可包括在反应容器中形成反应混合物; 将密封在反应容器中的反应混合物加热至反应温度; 保持反应容器的温度一段时间; 冷却反应容器; 并从反应容器中除去铂合金纳米颗粒。 反应混合物可以包含铂前体,镍前体,甲酰胺还原溶剂和任选的钴前体。 在一些实施方案中,反应温度等于或低于甲酰胺还原溶剂的沸点,例如约120℃至约150℃。 当铂催化剂载体材料负载时,铂合金纳米颗粒提供了良好的电催化活性。

    Methods for forming negative electrode active materials for lithium-based batteries
    9.
    发明授权
    Methods for forming negative electrode active materials for lithium-based batteries 有权
    用于形成锂基电池用负极活性物质的方法

    公开(公告)号:US09379374B2

    公开(公告)日:2016-06-28

    申请号:US14332184

    申请日:2014-07-15

    Abstract: In an example method, a transition metal precursor is selected so its transition metal has a diffusion rate that is slower than a diffusion rate of silicon. An aqueous mixture is formed by dissolving the precursor in an aqueous medium, and adding silicon particles to the medium. The mixture is exposed to a hydroxide, which forms a product including the silicon particles and a transition metal hydroxide precipitate. The product is dried. In an inert or reducing environment, silicon atoms of the silicon particles in the dried product are caused to diffuse out of, and form voids in and/or at a surface of, the particles. At least some silicon atoms react with the transition metal hydroxide in the dried product to form i) a SiOx (0

    Abstract translation: 在示例性方法中,选择过渡金属前体,使得其过渡金属具有比硅的扩散速率慢的扩散速率。 通过将前体溶解在水性介质中并将硅颗粒添加到介质中来形成含水混合物。 将混合物暴露于氢氧化物,其形成包括硅颗粒和过渡金属氢氧化物沉淀物的产物。 产品干燥。 在惰性或还原环境中,使干燥产物中的硅颗粒的硅原子扩散到颗粒内和/或表面上形成空隙。 至少一些硅原子与干燥产物中的过渡金属氢氧化物反应以形成i)硅颗粒上的SiO x(0

    Synthesis of platinum-alloy nanoparticles and supported catalysts including the same
    10.
    发明授权
    Synthesis of platinum-alloy nanoparticles and supported catalysts including the same 有权
    铂合金纳米粒子的合成及包括其的负载型催化剂

    公开(公告)号:US09272334B2

    公开(公告)日:2016-03-01

    申请号:US13653688

    申请日:2012-10-17

    Abstract: Methods of synthesizing platinum-nickel-alloy nanoparticles and supported catalysts comprising the nanoparticles are provided. The methods may comprise forming a reaction mixture in a reaction vessel; heating the reaction mixture sealed in the reaction vessel to a reaction temperature; maintaining the temperature of the reaction vessel for a period of time; cooling the reaction vessel; and removing platinum-alloy nanoparticles from the reaction vessel. The reaction mixture may comprise a platinum precursor, a nickel precursor, a formamide reducing solvent, and optionally a cobalt precursor. In some embodiments the reaction temperature is at or below the boiling point of the formamide reducing solvent, such as from about 120° C. to about 150° C., for example. The platinum-alloy nanoparticles provide favorable electrocatalytic activity when supported on a catalyst support material.

    Abstract translation: 提供合成铂 - 镍合金纳米颗粒的方法和包含纳米颗粒的负载型催化剂。 所述方法可以包括在反应容器中形成反应混合物; 将密封在反应容器中的反应混合物加热至反应温度; 保持反应容器的温度一段时间; 冷却反应容器; 并从反应容器中除去铂合金纳米颗粒。 反应混合物可以包含铂前体,镍前体,甲酰胺还原溶剂和任选的钴前体。 在一些实施方案中,反应温度等于或低于甲酰胺还原溶剂的沸点,例如约120℃至约150℃。 当铂催化剂载体材料负载时,铂合金纳米颗粒提供了良好的电催化活性。

Patent Agency Ranking