Abstract:
A fluidic subsystem disposed on a vehicle includes an electric motor, a motor driver, and a fluidic pump that is disposed in a fluidic circuit that is monitored by a pressure sensor. A controller includes an instruction set that is executable to dynamically observe operation of the fluidic subsystem, from which it determines a plurality of observed parameters associated with the operation of the fluidic subsystem and a plurality of estimated parameters associated with the fluidic subsystem. A plurality of fault isolation parameters are determined based upon the observed parameters and the estimated parameters, and a fault in the fluidic subsystem is isolated based upon the fault isolation parameters. The isolated fault is communicated via the controller.
Abstract:
A method of detecting a ground fault in a faulty electronic control unit. A ground fault detection technique executed by a processor is enabled. The processor determines a message count for each respective electronic control unit transmitted during a ground offset condition over a predetermined time period. The message count includes messages communicated within a communication bus having a measured voltage at least a predetermined voltage value above an expected voltage value. The message counts for each respective electronic control unit are normalized. The faulty electronic control unit is identified as a function of the normalized message counts. A fault signal is output to identify the fault electronic control unit.
Abstract:
A method is disclosed for detecting ground faults in a communications system. The method includes measuring a predetermined number of voltage points; determining if the measured voltage points represent recessive or dominant bits; identifying which of the predetermined number of voltage points represent inter-frame bits and which represent frame data bits based on whether the measured voltage points are recessive or dominant; calculating a maximum average voltage for the inter-frame bits; calculating an average frame voltage for all dominant bits within a frame; determining a high average dominant voltage count based on a number of frames for which the average frame voltage is greater than a high voltage threshold; and determining if a ground fault exists based on the average frame voltage and the high average dominant voltage count.
Abstract:
A system and method for determining that a male terminal and a female terminal are becoming disconnected in a connector as a result of the connector becoming loose or the terminals becoming corroded. The connector is a multi-terminal connector including a male terminal housing that houses a plurality of male terminals and a female terminal housing that houses a plurality of associated female terminals. One of the male terminals is a diagnostic terminal that is shorter than the other male terminals so that it is disconnected from its associated female terminal before the other male terminals when the terminal housing separate, which can be used to detect connector failure.
Abstract:
A system and method for determining that a male terminal and a female terminal are becoming disconnected in a connector as a result of the connector becoming loose or the terminals becoming corroded. The connector is a multi-terminal connector including a male terminal housing that houses a plurality of male terminals and a female terminal housing that houses a plurality of associated female terminals. One of the male terminals is a diagnostic terminal that is shorter than the other male terminals so that it is disconnected from its associated female terminal before the other male terminals when the terminal housing separate, which can be used to detect connector failure.
Abstract:
A fluidic subsystem disposed on a vehicle includes an electric motor, a motor driver, and a fluidic pump that is disposed in a fluidic circuit that is monitored by a pressure sensor. A controller includes an instruction set that is executable to dynamically observe operation of the fluidic subsystem, from which it determines a plurality of observed parameters associated with the operation of the fluidic subsystem and a plurality of estimated parameters associated with the fluidic subsystem. A plurality of fault isolation parameters are determined based upon the observed parameters and the estimated parameters, and a fault in the fluidic subsystem is isolated based upon the fault isolation parameters. The isolated fault is communicated via the controller.
Abstract:
A system includes control modules, a low-voltage communications bus, e.g., a CAN bus of a vehicle, a voltage sensor that measures a bus voltage and outputs 2.5-3.5 VDC high-data and 1.5-2.5 VDC low-data, and a host electronic control unit (ECU). The host ECU detects a recoverable fault using a data pattern in the bus voltage data when the data is outside of a calibrated range, and recalibrates the sensor. Recalibration may be by adjustment to a scaling factor and/or a bias value. Non-recoverable “stuck-at-fault”-type or “out-of-range”-type faults may be detected using the pattern, as may be a ground offset fault. A method includes measuring the bus voltage using the sensor, comparing the output data to a range to detect the fault, and isolating a sensor fault as a recoverable fault using the data pattern when the data is outside of the range. The sensor is then be recalibrated.
Abstract:
A method is disclosed for detecting ground faults in a communications system. The method includes measuring a predetermined number of voltage points; determining if the measured voltage points represent recessive or dominant bits; identifying which of the predetermined number of voltage points represent inter-frame bits and which represent frame data bits based on whether the measured voltage points are recessive or dominant; calculating a maximum average voltage for the inter-frame bits; calculating an average frame voltage for all dominant bits within a frame; determining a high average dominant voltage count based on a number of frames for which the average frame voltage is greater than a high voltage threshold; and determining if a ground fault exists based on the average frame voltage and the high average dominant voltage count.
Abstract:
An internal combustion engine employs a starting system. A method for evaluating the starting system includes determining a cranking resistance ratio between a starter and a battery of the starting system during engine cranking. The cranking resistance ratio is normalized based upon an operating temperature of the starting system, and the starting system is evaluated based upon the normalized cranking resistance ratio.
Abstract:
A system includes an assessment module and a training module. The assessment module is configured to receive event data about an event associated with a subsystem of a vehicle. The assessment module is configured to determine deviations between reference data for the subsystem indicating normal operation of the subsystem and portions of the event data that precede and follow the event. The assessment module is configured to determine whether the event data indicates a fault associated with the subsystem by comparing the deviations to a threshold deviation. The training module is configured to update a model trained to identify faults in vehicles to identify the event as a fault associated with the subsystem of the vehicle based on the event data in response to the deviations indicating a fault associated with the subsystem.