Vehicle thermal system architecture

    公开(公告)号:US11065936B2

    公开(公告)日:2021-07-20

    申请号:US16100639

    申请日:2018-08-10

    Abstract: A thermal energy management system for a vehicle supplies thermal energy to a passenger compartment of the vehicle. The thermal energy management system includes three thermal fluid loops. The first thermal fluid loop includes a coolant pump for circulating a coolant through at least a vehicle battery, a transmission oil cooler of the vehicle, and a chiller such that the coolant selectively transfers thermal energy from the vehicle battery, the transmission oil cooler, and the chiller. The second thermal fluid loop circulates oil through the transmission oil cooler. The third thermal fluid loop circulates a refrigerant through at least the chiller and at least one condenser such that the third thermal fluid loop transfers thermal energy to the passenger compartment.

    SYSTEM AND METHOD FOR CONTROLLING FLUID TEMPERATURE IN A THERMAL SYSTEM

    公开(公告)号:US20210206229A1

    公开(公告)日:2021-07-08

    申请号:US16736177

    申请日:2020-01-07

    Abstract: A system for controlling fluid temperature includes a heat source, a heat sink coupled to the heat source such that a flow of coolant passes between the heat source and the heat sink, a first heat exchanger coupled to the heat source, a second heat exchanger coupled to the heat source, a valve coupled to the heat source, the first heat exchanger, the second heat exchanger, and the heat sink, the valve configured to regulate the flow of coolant between the heat source, the first heat exchanger, the second heat exchanger, and the heat sink, and a controller in electronic communication with the heat source and the valve. The controller is configured to determine an operating condition and generate a control signal to control the valve to direct the flow of coolant to one or more of the first and second heat exchangers and the heat source.

    Engine off cooling strategy
    8.
    发明授权

    公开(公告)号:US09964022B2

    公开(公告)日:2018-05-08

    申请号:US14669097

    申请日:2015-03-26

    Abstract: A system includes a coolant management module that, determines whether an engine of a vehicle is off, determines, in response to a determination that the engine is off, whether a heater associated with the engine is on, receives one of a plurality of engine coolant temperature (ECT) measurements and a respective location associated with the received ECT measurement, and communicates the respective location and an instruction to direct engine coolant flow from the respective location to one of the heater and engine. The system also includes a coolant control module that selectively actuates one or more coolant control valves based on the respective location and the instruction.

    POWERTRAIN THERMAL MANAGEMENT SYSTEM AND METHOD

    公开(公告)号:US20170321594A1

    公开(公告)日:2017-11-09

    申请号:US15145417

    申请日:2016-05-03

    Abstract: A vehicle powertrain thermal management system for distributing thermal energy to vehicle powertrain components, including an engine and a transmission. The system for managing heat energy includes a coolant pump, a first control valve, a second control valve, a radiator, a heater core, and a transmission oil heat exchanger. The first control valve has an inlet that is in fluid communication with the engine coolant outlet. The first control valve also has a first control valve outlet. The second control valve has a first inlet, a second inlet, a first outlet, a second outlet and a third outlet. Heat energy produced by the engine is transferred to the radiator through control of the first control valve and to at least one of the heater core, and the transmission oil heat exchanger through the control of the second control valve.

    Particulate filter regeneration management
    10.
    发明授权
    Particulate filter regeneration management 有权
    颗粒过滤器再生管理

    公开(公告)号:US09114344B2

    公开(公告)日:2015-08-25

    申请号:US13712016

    申请日:2012-12-12

    Abstract: A method for implementing particulate filter regeneration management is provided. The method includes determining a presumptive deviation between a particulate model and actual particulate level conditions of the particulate filter. The presumptive deviation is determined from identification of an occurrence of extended parking, a passive regeneration, residual particulates, and a pressure signal. Each of the extended parking, passive regeneration, residual particulate, and pressure signal is specified by a respective particulate model deviation type. The method also includes selectively controlling current to at least one zone of a plurality of zones of an electric heater to initiate a regeneration event based on the presumptive deviation, and estimating the particulate level in the particulate filter once the regeneration event is complete.

    Abstract translation: 提供了一种实现微粒过滤器再生管理的方法。 该方法包括确定颗粒模型与颗粒过滤器的实际颗粒物水平条件之间的推定偏差。 推测偏差是通过对扩展停车,被动再生,残留颗粒和压力信号的发生的识别来确定的。 每个扩展停车,被动再生,残留颗粒和压力信号由相应的颗粒模型偏差类型指定。 该方法还包括选择性地将电流控制到电加热器的多个区域中的至少一个区域,以基于推定偏差来启动再生事件,并且一旦再生事件完成,则估计微粒过滤器中的微粒水平。

Patent Agency Ranking