Abstract:
Embodiments of the invention provide a screen sharing technology including a local computing device and a remote computing device. The local computing device compresses pixel data captured from a frame buffer of the local computing device into a video stream. When the local computing device determines that a video visual component is to be displayed, it obtains compressed data for the video visual component, location information and temporal information. The remote computing device decodes the compressed data and the video stream in different decoder and displays the video stream and compressed data on its monitor according to the temporal information and location information. As such, the embodiment described above leads to better coding efficiency, better coding quality, and lower bit rate.
Abstract:
Embodiments are provided for compressing a color index map in video coding applications including screen content images. An embodiment method includes obtaining, at a video codec device, an image block, and generating a color index map comprising a plurality of entries and representing the image block. Each one of the entries is assigned a color index indicating a respective color. The method further includes assigning, in a correct prediction map, a first bit-value for each one of the entries that is predictable by a neighboring entry in the color index map, and a second bit-value for each one of the entries that is unpredictable by any neighboring entry in the color index map. Further, an actual value from the color index map for the each one of the entries that is unpredictable by any neighboring entry is added in a sequence of non-predictable color indices.
Abstract:
An encoding apparatus includes a processor configured to receive a video frame including screen content and generate a block containing an index map of colors for screen content in the video frame. The block includes a first string of index values and a second string of the index values immediately below the first string. The processor is also configured to encode a second string palette_run_type flag corresponding to the second string without referencing a first string palette_run_type flag corresponding to the first string and using a single available context. A transmitter operably coupled to the processor is configured to transmit the second string palette_run_type flag in a bitstream to a decoding apparatus.
Abstract:
An encoding apparatus, decoding apparatus, and coding methods are provided. A method of decoding including receiving, by a decoder, a bitstream from an encoder, scanning, using the decoder, the bitstream to identify a first flag corresponding to a string of index values in a block other than a last string and a second flag corresponding to the last string of index values from the block, determining, by the decoder, that a context model used to encode the first flag is the same as the context model used to encode the second flag, and generating, by the decoder, a video frame using the context model
Abstract:
A video codec comprising a processor configured to compute a reconstructed pixel based on a residual pixel and a first prediction pixel and compute a second prediction pixel in a directional intra prediction mode based on the reconstructed pixel, wherein the first and second prediction pixels are located in a same block of a video frame. A method for intra prediction comprising computing a prediction pixel adaptively based on a plurality of reconstructed neighboring pixels, wherein a distance between the prediction pixel and each of the plurality of reconstructed neighboring pixels is one.
Abstract:
A method of scalable video encoding, the method comprising encoding a first video signal using a base layer encoding, and encoding a second video signal using an enhancement layer encoding, wherein the enhancement layer encoding uses inter-layer prediction information based on the first video signal, wherein one of the first video signal or the second video signal has a resolution of 960×540, wherein the second video signal has a higher resolution than the first video signal, and wherein the first video signal is related to the second video signal by a spatial resolution factor that is an integer or an integer ratio.
Abstract:
An encoding apparatus and coding methods. The method includes receiving a video frame including screen content, generating a block containing an index map of colors for screen content in the video frame, wherein the block includes strings of index values, encoding one or multiple consecutive index values in a first string of index values using same escape colors index values and a run value identifying how many of the same escape color index values have been consecutively encoded, where the escape colors index values represent escape colors, and where the escape colors are colors not included in a palette corresponding to the block, sequentially encoding the escape colors corresponding to the one or multiple consecutive index values after all of the strings of index values of the block have been encoded, and transmitting the strings of index values and the escape colors in a bitstream to a decoding apparatus.
Abstract:
Presented systems and methods facilitate screen content coding. A system can comprises: a processing component configured to execute coding operations and a storage component configured to store information for the processing component, including the color table and color index map. The coding operations can include: receiving information associated with a plurality of pixels; creating a color table, the color table includes color values (e.g., of the pixels) and corresponding indices; creating a color index map wherein each index of the color map maps a pixel to an index value of the color table; and performing coding operations corresponding to the color table and color index map. In one exemplary implementation, index values of the color table are encoded/decoded during color table and index map coding rather than the actual raw color values for each pixel. Various types of compression and coding can be implemented (e.g., lossless, lossy, intra-prediction, inter-prediction, etc.).
Abstract:
An apparatus is configured to perform a method for screen content encoding. The method includes deriving a palette table and a color index map based on a coding unit (CU). The method also includes encoding the palette table and encoding the color index map. The method further includes combining the encoded palette table and the encoded color index map for transmission to a receiver, where the palette table and index map are decoded to reconstruct a pixel block.
Abstract:
A method comprising adaptively updating a value of a Exponential-Golomb (EG) parameter according to a value of at least one encoded prediction residual value, and encoding a prediction residual value in a lossless mode using an EG code using the value of the EG parameter.