Abstract:
In a first step, in a printed material web (1) moved in a feed direction, a first material web part (5) which is formed by a material web section (1a)is folded against the rest of the material web (6) that is formed from two material web portions (1b, 1c)).In the region of a connecting line (2b) extending between neighbouring material web sections (1b, 1c) the two material web parts (5,6) are connected to one another by a means of a bonding adhesive. In a subsequent step the material web (1) is folded again along a line (2b) extending between two neighbouring material web sections. (1b, 1c)All material web sections (1a, 1b, 1c) lie above one another. Subsequently, multi-page sub-products (11), the pages (12a, 12b, 12c) of which are connected to one another in the region of the spine (13) of the sub-product, are separated from the twice-folded material web (1). Finally, the sub-products (11) are placed on top of one another to form a stack (16) and are connected to one another in the region of the spine (13) thereof by means of a bonding adhesive.
Abstract:
In a first step, in a printed material web moved in a feed direction, a first material web part formed by a material web section is folded against the rest of the material web that is formed from two material web portions. In the region of a connecting line extending between neighbouring material web sections the two material web parts are connected by a bonding adhesive. In a subsequent step the material web is folded again along a line extending between two neighbouring material web sections. All material web sections lie above one another. Subsequently, multi-page sub-products, the pages of which are connected to one another in the region of the spine of the sub-product, are separated from the twice-folded material web. The sub-products are placed on top of one another to form a stack and connected to one another in the region of the spine by a bonding adhesive.
Abstract:
In order to form stacks, of which each forms a book block, folded sheets are provided with an adhesive application or layer of adhesive before they are placed on one another. Said adhesive application is applied to the sheets adjacent to the folded edge of said sheets and extends in the direction of said folded edge which comes to lie in the spine of the book block. The adhesive can be applied as a continuous track or as a track which is interrupted multiple times, or else in a punctiform manner. The sheets are joined to one another in the stack by means of said adhesive application, with the result that they maintain their position within the stack during further transport of the stack.
Abstract:
In order to form stacks, of which each forms a book block, folded sheets are provided with an adhesive application or layer of adhesive before they are placed on one another. Said adhesive application is applied to the sheets adjacent to the folded edge of said sheets and extends in the direction of said folded edge which comes to lie in the spine of the book block. The adhesive can be applied as a continuous track or as a track which is interrupted multiple times, or else in a punctiform manner. The sheets are joined to one another in the stack by means of said adhesive application, with the result that they maintain their position within the stack during further transport of the stack.
Abstract:
A composite label affixable to a surface of an article comprising an adhesive-bearing base sheet for affixing the label to the article, a front sheet joined to the base sheet along its periphery and an enclosure placed in the pocket formed between the base and front sheets, wherein a tear line in the front sheet provides access to said pocket and to said enclosure; also, a carrier strip having such labels mounted thereon; also a labelled article having adhesively affixed thereto a composite label comprising a base sheet, a front sheet joined to the base sheet along its periphery and an enclosure placed in the pocket formed between the base and front sheets, wherein a tear line in the front sheet provides access to said pocket and to said enclosure.
Abstract:
In a material web which is printed in a digital printing station and moved in an advancement direction, a first material-web strand, which is formed by at least one printed material-web portion, is combined with a second material-web strand, which is formed by two printed material-web portions, by folding. The two material-web strands are connected to one another by an adhesive. Subproducts are then severed from the thus interconnected material-web strands by cross-cutting. These subproducts comprise a first printed sheet, severed from the first material-web strand, and a second printed sheet, connected to the first printed sheet and severed from the second material-web strand. The subproducts are then positioned one upon the other to form a stack, the subproducts being connected to one another by an adhesive in the region of the subsequent folding line. The stacked subproducts are then folded about a folding line to form an end product.
Abstract:
For forming a packaged product sample held in a carrier material (1), in a first operation two sections of material (8, 9), for example sections of film, are applied next to each other to the same side of the carrier material (1). Then, the product sample (10) is applied to one section of material (8). Subsequently, by folding the carrier material (1) about a folding line (11), the other section of material (9) is placed over the section of material (8) carrying the product sample (10). Subsequently, the two sections of carrier material (1a, 1b) lying one over the other and carrying the sections of material (8, 9) are joined to each other, to be precise along a closed region surrounding the product sample (10). In order to be able to remove the product sample, within the joining region between the two sections of carrier material (1a, 1b) there is provided a line of weakness which defines a tear-open part.
Abstract:
For the production of different types of newspapers, the material web printed in a digital printing system (2) passes through a further processing system (3), whose most important structural units are a side edge cutting station (4), a longitudinal cutting station (5), a crosscutting station (6), a first collecting station (8), a crossfolding station (10), a longitudinal folding station (11), a stitching station (12), a second collecting station (13) and a delivery station (14). The sheets separated from the material web in the crosscutting station (6) are placed on one another in the first collecting station (8) to form sections. These sections are folded transversely with respect to the direction of movement (Y) in the crossfolding station (10). In the longitudinal folding station (11), the sections are folded in their direction of movement (Y). In the stitching station (12), the sheets of a section are joined to one another along the longitudinal fold. In the second collecting station (13), a plurality of sections are inserted into one another. The side edge cutting station (4), the longitudinal cutting station (5), the crossfolding station (10), the stitching station (12) and the second collecting station (13) can be deactivated from case to case, depending on the format and/or composition of the newspaper to be produced in each case.
Abstract:
An apparatus produces printed matter, such as forms and publicity material, from a first, continuously fed flexible material web of given width. The first flexible material web is conveyed at a first constant supply speed. A second flexible material web is conveyed at a second constant supply speed lower than the first supply speed. In a cutting station, the second flexible material web is cut into material strips. The supply speed of a leading end region of the second flexible material web is briefly increased periodically by an arrangement provided upstream of the cutting station.
Abstract:
In a material web which is printed in a digital printing station and moved in an advancement direction, a first material-web strand, which is formed by at least one printed material-web portion, is combined with a second material-web strand, which is formed by two printed material-web portions, by folding. The two material-web strands are connected to one another by an adhesive. Subproducts are then severed from the thus interconnected material-web strands by cross-cutting. These subproducts comprise a first printed sheet, severed from the first material-web strand, and a second printed sheet, connected to the first printed sheet and severed from the second material-web strand. The subproducts are then positioned one upon the other to form a stack, the subproducts being connected to one another by an adhesive in the region of the subsequent folding line. The stacked subproducts are then folded about a folding line to form an end product.