摘要:
An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.
摘要:
An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.
摘要:
Devices and methods are described for homogenization, processing, detection, and analysis of biological samples such as insects, fungi, bacteria, and plant and animal tissues. Multiple chambers in these devices permit different processing functions to be carried out at each stage, such that the resulting homogenized product can be further processed, purified, analyzed, and/or biomolecules such as metabolites, proteins and nucleic acids, or pharmaceutical products can be detected. The device can be used in a hydrostatic pressure apparatus, in which different activities, i.e. incubations, addition or renewal of reagent, and generation and detection of signal can be carried out in the appropriate chamber. The method improves the preservation of biomolecules from chemical and enzymatic degradation relative to conventional means. Additionally, this method enables automated sample preparation and analytical processes.
摘要:
Methods for cell lysis and purification of biological materials, involving subjecting a sample maintained at a subzero temperature to high pressure, are disclosed. Apparatus for practicing the methods are also disclosed. The cell or cells that are lysed may be in suspension or part of a tissue. They are lysed by a method that includes: (i) providing a frozen cell or cells under atmospheric pressure; (ii) while maintaining the cell or cells at a subzero temperature, exposing the cell or cells to an elevated pressure in a pressure chamber, the elevated pressure being sufficient to thaw the frozen cell or cells at the subzero temperature; (iii) depressurizing the pressure chamber to freeze the cell or cells at the subzero temperature; and (iv) repeating the exposing and depressurizing steps until the cell or cells are lysed. This method can lyse a cell or cells with or without cell walls; such cells include, but are not limited to, bacteria, viruses, fungal cells (e.g, yeast cells), plant cells (e.g, corn leaf tissue), animal cells, insect cells, and protozoan cells.
摘要:
Methods for cell lysis and purification of biological materials, involving subjecting a sample to high pressure. Also featured is an apparatus for practicing the methods.
摘要:
The invention is based on the discovery that hyperbaric, hydrostatic pressure reversibly alters the partitioning of biomolecules between certain adsorbed and solvated phases relative to partitioning at ambient pressure. The new methods and devices disclosed herein make use of this discovery for highly selective and efficient, low salt isolation and purification of nucleic acids from a broad range of sample types, including forensic samples, blood and other body fluids, and cultured cells. In one embodiment, the invention features a pressure-modulation apparatus. The apparatus includes an electrode array system having at least two (i.e., two, three, four, or more) electrodes; and a conduit interconnecting the electrodes. The conduit contains an electrically conductive fluid in contact with a phase positioned in a pressure chamber. The phase can be, for example, a binding medium or stationary phase.
摘要:
The invention is based on the discovery that hyperbaric, hydrostatic pressure reversibly alters the partitioning of nucleic acids between certain adsorbed and solvated phases relative to partitioning at ambient pressure. The new methods and devices disclosed herein make use of this discovery for highly selective and efficient, low salt isolation and purification of nucleic acids from a broad range of sample types, including forensic samples, blood and other body fluids, and cultured cells.
摘要:
Cell-permeant fusion peptides Tat-PDZ can dose-dependently reduce the threshold for anesthesia. PDZ domain-mediated protein interactions at synapses in the central nervous system play an important role in the molecular mechanisms of anesthesia. Moreover, Tat-PDZ cell-permeant fusion peptides are delivered intracellularly into neurons in the central nervous system subsequent to intraperitoneally injection. By in vitro and in vivo binding assays, we found that the Tat-PDZ dose-dependently inhibited the interactions between NMDARs and PSD-95. Furthermore, behavior testing showed that animals given Tat-PDZ exhibited significantly reduced established inflammatory pain behaviors compared to vehicle-treated group. Our results indicate that by disrupting NMDAR/PSD-95 protein interactions, the Tat-PDZ cell-permeable fusion peptides provide a new approach for inflammatory pain therapy.
摘要:
Methods for cell lysis and purification of biological materials, involving subjecting a sample to high pressure. Also featured is an apparatus for practicing the methods.