Abstract:
A bicycle configured for communication with other bicycles, a centralized server, client computing devices and third party servers allows the rider to be connected with friends, coaches/trainers, and third party vendors including vendors associated with lodging, food, and other conveniences, vendors associated with bike servicing, equipment, warranties, and other bike related products and services, and vendors associated with routes, areas or destinations. Information may be communicated in real time or stored in memory and communicated to servers, client devices, other riders, etc., at a later date. Information may be communicated to the bike controller for route planning, service scheduling, training purposes and the like. Information communicated to or from the bicycle may be performed as indicated by the rider or there may be predetermined rules or guidelines for what information is collected and to whom the information may be sent to or received from.
Abstract:
A bicycle configurable for operating using a speed based control system and scheme or a torque based control system and scheme. A speed sensor or a torque sensor may detect an operating characteristic of the bicycle and a controller may determine whether to operate using a speed based control system and scheme or a torque based control system and scheme based on the operating characteristic. A signal from a speed sensor or a torque sensor may be used for determining the mechanical limits of a CVT range and when to incorporate an electric motor.
Abstract:
A continuously variable transmission on a bicycle may be automatically configured with little or no assistance from a user. Optical scanning devices, RFIDs, and other information capturing technology can communicate with a controller. The controller may then perform a portion or all of a configuration process. In operation, a controller may determine that calibration is needed. A calibration process may be initiated and performed with little or no user interaction. A calibration process may account for a load, a power source, or an environment.
Abstract:
A continuously variable transmission on a bicycle may be automatically configured with little or no assistance from a user. Optical scanning devices, RFIDs, and other information capturing technology can communicate with a controller. The controller may then perform a portion or all of a configuration process. In operation, a controller may determine that calibration is needed. A calibration process may be initiated and performed with little or no user interaction. A calibration process may account for a load, a power source, or an environment.
Abstract:
A bicycle configured for communication with other bicycles, a centralized server, client computing devices and third party servers allows the rider to be connected with friends, coaches/trainers, and third party vendors including vendors associated with lodging, food, and other conveniences, vendors associated with bike servicing, equipment, warranties, and other bike related products and services, and vendors associated with routes, areas or destinations. Information may be communicated in real time or stored in memory and communicated to servers, client devices, other riders, etc., at a later date. Information may be communicated to the bike controller for route planning, service scheduling, training purposes and the like. Information communicated to or from the bicycle may be performed as indicated by the rider or there may be predetermined rules or guidelines for what information is collected and to whom the information may be sent to or received from.
Abstract:
A bicycle configured for communication with other bicycles, a centralized server, client computing devices and third party servers allows the rider to be connected with friends, coaches/trainers, and third party vendors including vendors associated with lodging, food, and other conveniences, vendors associated with bike servicing, equipment, warranties, and other bike related products and services, and vendors associated with routes, areas or destinations. Information may be communicated in real time or stored in memory and communicated to servers, client devices, other riders, etc., at a later date. Information may be communicated to the bike controller for route planning, service scheduling, training purposes and the like. Information communicated to or from the bicycle may be performed as indicated by the rider or there may be predetermined rules or guidelines for what information is collected and to whom the information may be sent to or received from.
Abstract:
A continuously variable transmission on a bicycle may be automatically configured with little or no assistance from a user. Optical scanning devices, RFIDs, and other information capturing technology can communicate with a controller. The controller may then perform a portion or all of a configuration process. In operation, a controller may determine that calibration is needed. A calibration process may be initiated and performed with little or no user interaction. A calibration process may account for a load, a power source, or an environment.
Abstract:
A continuously variable transmission on a bicycle may be automatically configured with little or no assistance from a user. Optical scanning devices, RFIDs, and other information capturing technology can communicate with a controller. The controller may then perform a portion or all of a configuration process. In operation, a controller may determine that calibration is needed. A calibration process may be initiated and performed with little or no user interaction. A calibration process may account for a load, a power source, or an environment.
Abstract:
Components, subassemblies, systems, and/or methods for improving the performance and increasing the life of continuously variable transmissions (CVT). A first stator may be formed with an outer diameter greater than an outer diameter of a second stator. A stator may have radial slots formed to extend farther radially inward than slots on the other stator. The larger outer diameter of a stator or the formation of guide slots on a first stator extending farther radially inward of guide slots on a second stator may prevent egress of a planet axle from a radial slot, increase range of the CVT, allow for larger tolerances to reduce losses, and other advantages, Slots on a timing plate may be formed having a width greater than a width of guide slots formed on either stator to allow the stators to control adjustments while the timing plate avoids runaway axles. The shape, including junction between surfaces on a timing plate or stator may also prevent an axle from egressing. Any one or a combination of these features allow a CVT to be formed smaller and lighter to allow for clearance in smaller environments and for reduced inertia.
Abstract:
A continuously variable transmission on a bicycle may be automatically configured with little or no assistance from a user. Optical scanning devices, RFIDs, and other information capturing technology can communicate with a controller. The controller may then perform a portion or all of a configuration process. In operation, a controller may determine that calibration is needed. A calibration process may be initiated and performed with little or no user interaction. A calibration process may account for a load, a power source, or an environment.