Abstract:
Methods and systems are provided for a turbocharger system to reduce and balance axial thrust load on the turbine shaft and the associated bearing system and sealing. In one example, a partial back plate compressor may be used in combination with an axial turbine to reduce axial thrust load and to improve turbocharger transient response time. In another example, a regenerative turbocharger system with back-to-back turbo pump may be used to reduce and balance axial thrust load.
Abstract:
Methods and systems are provided for a turbocharger system to reduce and balance axial thrust load on the turbine shaft and the associated bearing system and sealing. In one example, a partial back plate compressor may be used in combination with an axial turbine to reduce axial thrust load and to improve turbocharger transient response time. In another example, a regenerative turbocharger system with back-to-back turbo pump may be used to reduce and balance axial thrust load.
Abstract:
Systems are provided for a reinforcement element coupled to a sheet metal turbine housing that imparts desirable thermal-protective and structurally strengthening characteristics to the housing layers. In one example, a system may include a turbine comprising a housing surrounding a turbine rotor, the housing having an outer layer surrounding an inner layer at a distance to form an intermediate space between the inner and outer layers. Moreover, disposed in the intermediate space is a reinforcement element coupled to the inner and outer layers, providing strength and consistent rigidity without a significant increase in weight to the housing.
Abstract:
Various systems and methods are described for a variable geometry turbine. In one example, a nozzle vane includes a stationary having a first cambered sliding surface and a sliding vane having a second cambered sliding surface where the second cambered sliding surface includes a flow disrupting feature in contact with the first sliding cambered surface. The sliding vane may be positioned to slide in a direction from substantially tangent along a curved path to an inner circumference of the turbine nozzle and selectively uncover the flow disrupting feature.
Abstract:
Systems are provided for a reinforcement element coupled to a sheet metal turbine housing that imparts desirable thermal-protective and structurally strengthening characteristics to the housing layers. In one example, a system may include a turbine comprising a housing surrounding a turbine rotor, the housing having an outer layer surrounding an inner layer at a distance to form an intermediate space between the inner and outer layers. Moreover, disposed in the intermediate space is a reinforcement element coupled to the inner and outer layers, providing strength and consistent rigidity without a significant increase in weight to the housing.
Abstract:
Various systems and methods are described for a variable geometry turbine. In one example, a nozzle vane includes a stationary having a first cambered sliding surface and a sliding vane having a second cambered sliding surface where the second cambered sliding surface includes a flow disrupting feature in contact with the first sliding cambered surface. The sliding vane may be positioned to slide in a direction from substantially tangent along a curved path to an inner circumference of the turbine nozzle and selectively uncover the flow disrupting feature.
Abstract:
A vehicle system operation method is provided. The method comprises, during a first operating condition, increasing back pressure in a first exhaust conduit positioned upstream of a turbine and downstream of a first emission control device and during a second operating condition, reducing back pressure in the first exhaust conduit and flowing boosted air from downstream of a compressor into a second exhaust conduit positioned upstream of a second emission control device and downstream of the turbine.
Abstract:
Various systems and methods are described for a variable geometry turbine. In one example, a nozzle vane includes a stationary having a first cambered sliding surface and a sliding vane having a second cambered sliding surface where the second cambered sliding surface includes a flow disrupting feature in contact with the first sliding cambered surface. The sliding vane may be positioned to slide in a direction from substantially tangent along a curved path to an inner circumference of the turbine nozzle and selectively uncover the flow disrupting feature.
Abstract:
Various systems and methods are described for a variable geometry turbine. In one example, a nozzle vane includes a stationary having a first cambered sliding surface and a sliding vane having a second cambered sliding surface where the second cambered sliding surface includes a flow disrupting feature in contact with the first sliding cambered surface. The sliding vane may be positioned to slide in a direction from substantially tangent along a curved path to an inner circumference of the turbine nozzle and selectively uncover the flow disrupting feature.
Abstract:
Embodiments may provide variable geometry turbine, a nozzle vane for a variable geometry turbine, and a method. The variable geometry turbine that may include a turbine wheel and a plurality of adjustable vanes radially positioned around the turbine wheel. The turbine may also include a flow disrupting feature on one or more outside surfaces of one or more of the plurality of adjustable vanes.